Electromagnetic radiation and Radio 电磁波/电磁辐射和无线电波
电磁辐射,又称电磁波,是由同相振荡且互相垂直的电场与磁场在空间中以波的形式传递能量和动量,其传播方向垂直于电场与磁场构成的平面。
电磁辐射的载体为光子,不需要依靠介质传播,在真空中的传播速度为光速。电磁辐射可按照频率分类,从低频率到高频率,主要包括无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线。
人眼可接收到的电磁辐射,波长大约在380至780nm之间,称为可见光。只要是本身温度大于绝对零度的物体,除了暗物质以外,都可以发射电磁辐射,而世界上并不存在温度等于或低于绝对零度的物体,因此,人们周边所有的物体时刻都在进行电磁辐射。尽管如此,只有处于可见光频域以内的电磁波,才可以被人们肉眼看到,对于不同的生物,各种电磁波频段的感知能力也有所不同。
电磁波的频率划分
γ | γ = Gamma rays | ||||
X-rays | HX = Hard X-rays | SX = Soft X-Rays | |||
Ultraviolet | EUV = Extreme-ultraviolet | NUV = Near-ultraviolet | |||
Visible light (colored bands) | |||||
Infrared | NIR = Near-infrared | MIR = Mid-infrared | FIR = Far-infrared | ||
Microwaves | EHF = Extremely high frequency (microwaves) | SHF = Super-high frequency (microwaves) | |||
Radio | UHF = Ultrahigh frequency (radio waves) | VHF = Very high frequency (radio) | HF = High frequency (radio) | MF = Medium frequency (radio) | LF = Low frequency (radio) |
电磁波被大气层吸收的情况
无线电与电磁波
频率在数百千赫到数百兆赫之间的电磁波叫做无线电波,它包括短波、中波、长波、微波,无线电波也仅仅是电磁波的一部分,但电磁波不仅仅只有无线电波,仅仅只有频率相对较低的一部分电磁波才叫无线电波。
波段 | 频段名称 | 缩写 | 频率范围 | 波段 | 波长范围 | 用法 |
---|---|---|---|---|---|---|
≤3Hz) | ≥ 100,000 Km | |||||
1 | 极低频 | ELF | 3Hz–30Hz | 极长波 | 100,000千米 – 10,000千米 | 潜艇通讯或直接转换成声音 |
2 | 超低频 | SLF | 30Hz–300Hz | 超长波 | 10,000千米 – 1,000千米 | 直接转换成声音或交流输电系统(50-60赫兹) |
3 | 特低频 | ULF | 300Hz–3KHz | 特长波 | 1,000千米 – 100千米 | 矿场通讯或直接转换成声音 |
4 | 甚低频 | VLF | 3KHz–30KHz | 甚长波 | 100千米 – 10千米 | 直接转换成声音、超声、地球物理学研究 |
5 | 低频 | LF | 30KHz–300KHz | 长波 | 10千米 – 1千米 | 国际广播、全向信标 |
6 | 中频 | MF | 300KHz–3MHz | 中波 | 1千米 – 100米 | 调幅(AM)广播、全向信标、海事及航空通讯 |
7 | 高频 | HF | 3MHz–30MHz | 短波 | 100米 – 10米 | 短波、民用电台 |
8 | 甚高频 | VHF | 30MHz–300MHz | 米波 | 10米 – 1米 | 调频(FM)广播、电视广播、航空通讯 |
9 | 特高频 | UHF | 300MHz–3GHz | 分米波 | 1米 – 100毫米 | 电视广播、无线电话通讯、无线网络、微波炉 |
10 | 超高频 | SHF | 3GHz–30GHz | 厘米波 | 100毫米 – 10毫米 | 无线网络、雷达、人造卫星接收 |
11 | 极高频 | EHF | 30GHz–300GHz | 毫米波 | 10毫米 – 1毫米 | 射电天文学、遥感、人体扫描安检仪 |
>300GHz | < 1毫米 |
电与电磁学的发展
1600, English scientist William Gilbert made a careful study of electricity and magnetism, distinguishing the lodestone effect from static electricity produced by rubbing amber.
1752, Benjamin Franklin was reputed to have attached a metal key to the bottom of a dampened kite string and flown the kite in a storm-threatened sky, a succession of sparks jumping from the key to the back of his hand showed that lightning was indeed electrical in nature.
1800, Alessandro Volta's battery, or voltaic pile, made from alternating layers of zinc and copper, provided scientists with a more reliable source of electrical energy than the electrostatic machines previously used
1819–1820, The recognition of electromagnetism, the unity of electric and magnetic phenomena, is due to Hans Christian Ørsted and André-Marie Ampère.
1821, Michael Faraday invented the electric motor.
1827, Georg Ohm mathematically analysed the electrical circuit.
1837, Morse developed an early forerunner to the modern International Morse code.
1861-1862, Electricity and magnetism (and light) were definitively linked by James Clerk Maxwell, in particular in his "On Physical Lines of Force".
1867, Radio waves were first predicted by mathematical work done by Scottish mathematical physicist James Clerk Maxwell.
1876, Scottish emigrant Alexander Graham Bell was the first to be granted a United States patent for a device that produced clearly intelligible replication of the human voice, which is now called telephone.
1878, in the US, Thomas Edison developed and sold a commercially viable replacement for gas lighting and heating using locally generated and distributed direct current electricity.
1887, Heinrich Hertz demonstrated the reality of Maxwell's electromagnetic waves by experimentally generating radio waves in his laboratory, showing that they exhibited the same wave properties as light: standing waves, refraction, diffraction, and polarization
1887, Tesla developed an induction motor that ran on alternating current (AC), a power system format that was rapidly expanding in Europe and the United States because of its advantages in long-distance, high-voltage transmission
1897, Radio waves were first used for communication Guglielmo Marconi, who developed the first practical radio transmitters and receivers.
1904, John Ambrose Fleming invented the two-electrode vacuum-tube rectifier, which he called the oscillation valve. It was also called a thermionic valve, vacuum diode, kenotron, thermionic tube, or Fleming valve. This invention is often considered to have been the beginning of electronics, for this was the first vacuum tube. Fleming's diode was used in radio receivers and radars for many decades afterwards, until it was superseded by solid state electronic technology more than 50 years later.
1906, Lee de Forest invented the first successful three-element (triode) vacuum tube, and the first device which could amplify electrical signals.
1921, The first successful transatlantic tests operating in the 200 meter mediumwave band (near 1,500 kHz in the modern AM broadcast band) – the shortest wavelength then available to amateurs.
1947, The first practically implemented point-contact transistor invented by American physicists John Bardeen, Walter Brattain, and William Shockley.
Electromagnetic radiation and Radio 电磁波/电磁辐射和无线电波的更多相关文章
- Radio Basics for RFID
Radio Basics for RFID The following is excerpted from Chapter 3: Radio Basics for UHF RFID from the ...
- 由浅入深学习PBR的原理和实现
目录 一. 前言 1.1 本文动机 1.2 PBR知识体系 1.3 本文内容及特点 二. 初阶:PBR基本认知和应用 2.1 PBR的基本介绍 2.1.1 PBR概念 2.1.2 与物理渲染的差别 2 ...
- 物联网RFID技术之应用ETC系统
背景 信息物理系统CPS通过集成先进的感知.计算.通 信.控制等信息技术和自动控制技术,构建了物理空间与信息空间中人. 机.物.环境.信息等要素相互映射.适时交互.高效协同的复杂系统, 实现系统内资源 ...
- A Personal Selection of Books on E lectromagnetics and Computational E lectromagnetics---David B. Davidson
链接. General Books on Electromagnetics When our department recently reviewed our junior-level text, w ...
- β particle, α particle, γ ray, ionization chamber
Alpha particles consist of two protons and two neutrons bound together into a particle identical to ...
- Optimizing subroutine calls based on architecture level of called subroutine
A technique is provided for generating stubs. A processing circuit receives a call to a called funct ...
- SAE J1708 DS36277 MAX3444, DS75176B
http://en.wikipedia.org/wiki/J1708 J1708 SAE J1708 is a standard used for serial communications betw ...
- Why do Antennas Radiate?
Obtaining an intuitive idea for why antennas radiate is helpful in understanding the fundamentals of ...
- TCP/IP 物理层卷三 -- 传输介质
一.有线传输介质(Guided Transmission Media) 1.1 双绞线(Twisted Pair) 双绞线(twisted pair)是一种综合布线工程中最常用的有线传输介质(导向传 ...
随机推荐
- 用SLF4j/Logback打印日志-3
在 用SLF4j/Logback打印日志-1 和 用SLF4j/Logback打印日志-2 中分别介绍了Logback记录日志的基本原理并重点介绍了输出源配置.本篇介绍一些性能和技巧性的东西. 性能 ...
- Dubbo的一些编码约定和设计原则
编码约定 代码风格 Dubbo 的源代码和 JavaDoc 遵循以下的规范: Code Conventions for the Java Programming Language How to Wri ...
- Qt实现自定义按钮的三态效果
好久之前做的一个小软件,好长时间没动过了,在不记录下有些细节可能都忘了,这里整理下部分功能的实现. 按钮的三态,指的是普通态.鼠标的停留态.点击态,三态是界面交互非常基本的一项功能,Qt中如果使用的是 ...
- OpenCV教程(44) harris角的检测(2)
在上一篇教程中,我们得到的harris特征角二值图中,角的数目特别多,本章我们用一个局部最大化的方法,只保留局部值最大的harris特征角. // Harris角计算 cv::corner ...
- qt.qpa.plugin: Could not find the Qt platform plugin "windows" in ""
转载:https://forum.qt.io/topic/97484/qt-5-12-make-mingw-32-release/12 I build Qt 5.12 with MinGW 7.3.0 ...
- 转:TensorFlow入门(六) 双端 LSTM 实现序列标注(分词)
http://blog.csdn.net/Jerr__y/article/details/70471066 欢迎转载,但请务必注明原文出处及作者信息. @author: huangyongye @cr ...
- NLP--自然语言处理与机器学习会议
http://blog.csdn.net/ice110956/article/details/17090061 整理至11月中旬在重庆参加的自然语言处理与机器学习会议,第一讲为自然语言处理. 由基本理 ...
- Andriod NDK编译的时候无法使用math.h的函数。
编译NDK项目的时候,当用到sinf的时候,编译报错: 选中sinf函数,右键Go to declaration, 发现math.h的文件路径是: c:\ProgramData\Microsoft\A ...
- BitNami
BitNami 提供wordpress.joomla.drupal.bbpress等开源程序的傻瓜式安装包下载,所有的安装包内置了服务器环境,就是说,不需要在本地 电脑上另外搭建服务器,就可以一次性傻 ...
- Direct2D教程VI——转换(Transform)
目前博客园中成系列的Direct2D的教程有 1.万一的 Direct2D 系列,用的是Delphi 2009 2.zdd的 Direct2D 系列,用的是VS中的C++ 3.本文所在的 Direct ...