分布式tensorflow
分布式Tensorflow
Tensorflow的一个特色就是分布式计算。分布式Tensorflow是由高性能的gRPC框架作为底层技术来支持的。这是一个通信框架gRPC(google remote procedure call),是一个高性能、跨平台的RPC框架。RPC协议,即远程过程调用协议,是指通过网络从远程计算机程序上请求服务。
分布式原理
Tensorflow分布式是由多个服务器进程和客户端进程组成。有几种部署方式,列如单机多卡和多机多卡(分布式)。
单机多卡
单机多卡是指单台服务器有多块GPU设备。假设一台机器上有4块GPU,单机多GPU的训练过程如下:
在单机单GPU的训练中,数据是一个batch一个batch的训练。 在单机多GPU中,数据一次处理4个batch(假设是4个GPU训练), 每个GPU处理一个batch的数据计算。
变量,或者说参数,保存在CPU上。数据由CPU分发给4个GPU,在GPU上完成计算,得到每个批次要更新的梯度
在CPU上收集完4个GPU上要更新的梯度,计算一下平均梯度,然后更新。
循环进行上面步骤
多机多卡(分布式)
而分布式是指有多台计算机,充分使用多台计算机的性能,处理数据的能力。可以根据不同计算机划分不同的工作节点。当数据量或者计算量达到超过一台计算机处理能力的上上限的话,必须使用分布式
分布式的架构
当我们知道的基本的分布式原理之后,我们来看看分布式的架构的组成。分布式架构的组成可以说是一个集群的组成方式。那么一般我们在进行Tensorflow分布式时,需要建立一个集群。通常是我们分布式的作业集合。一个作业中又包含了很多的任务(工作结点),每个任务由一个工作进程来执行。
节点之间的关系
一般来说,在分布式机器学习框架中,我们会把作业分成参数作业(parameter job)和工作结点作业(worker job)。运行参数作业的服务器我们称之为参数服务器(parameter server,PS),负责管理参数的存储和更新,工作结点作业负责主要从事计算的任务,如运行操作。
参数服务器,当模型越来越大时,模型的参数越来越多,多到一台机器的性能不够完成对模型参数的更新的时候,就需要把参数分开放到不同的机器去存储和更新。参数服务器可以是由多台机器组成的集群。工作节点是进行模型的计算的。Tensorflow的分布式实现了作业间的数据传输,也就是参数作业到工作结点作业的前向传播,以及工作节点到参数作业的反向传播。
分布式的模式
在训练一个模型的过程中,有哪些部分可以分开,放在不同的机器上运行呢?在这里就要接触到数据并行的概念。
数据并行
数据并总的原理很简单。其中CPU主要负责梯度平均和参数更新,而GPU主要负责训练模型副本。
- 模型副本定义在GPU上
- 对于每一个GPU,都是从CPU获得数据,前向传播进行计算,得到损失,并计算出梯度
- CPU接到GPU的梯度,取平均值,然后进行梯度更新
每一个设备的计算速度不一样,有的快有的满,那么CPU在更新变量的时候,是应该等待每一个设备的一个batch进行完成,然后求和取平均来更新呢?还是让一部分先计算完的就先更新,后计算完的将前面的覆盖呢?这就由同步更新和异步更新的问题。
同步更新和异步更新
更新参数分为同步和异步两种方式,即异步随机梯度下降法(Async-SGD)和同步随机梯度下降法(Sync-SGD)
同步随即梯度下降法的含义是在进行训练时,每个节点的工作任务需要读入共享参数,执行并行的梯度计算,同步需要等待所有工作节点把局部的梯度算好,然后将所有共享参数进行合并、累加,再一次性更新到模型的参数;下一个批次中,所有工作节点拿到模型更新后的参数再进行训练。这种方案的优势是,每个训练批次都考虑了所有工作节点的训练情况,损失下降比较稳定;劣势是,性能瓶颈在于最慢的工作结点上。
异步随机梯度下降法的含义是每个工作结点上的任务独立计算局部梯度,并异步更新到模型的参数中,不需要执行协调和等待操作。这种方案的优势是,性能不存在瓶颈;劣势是,每个工作节点计算的梯度值发送回参数服务器会有参数更新的冲突,一定程度上会影响算法的收敛速度,在损失下降的过程中抖动较大。
分布式tensorflow的更多相关文章
- 学习笔记TF061:分布式TensorFlow,分布式原理、最佳实践
分布式TensorFlow由高性能gRPC库底层技术支持.Martin Abadi.Ashish Agarwal.Paul Barham论文<TensorFlow:Large-Scale Mac ...
- 【学习笔记】分布式Tensorflow
目录 分布式原理 单机多卡 多机多卡(分布式) 分布式的架构 节点之间的关系 分布式的模式 数据并行 同步更新和异步更新 分布式API 分布式案例 Tensorflow的一个特色就是分布式计算.分布式 ...
- 第八节,配置分布式TensorFlow
由于随着神经网络层数的增多,需要训练的参数也会增多,随之而来需要的数据集就会很大,这样会造成需要更大的运算资源,而且还要消耗很长的运算时间.TensorFlow提供了一个可以分布式部署的模式,将一个训 ...
- 构建分布式Tensorflow模型系列:CVR预估之ESMM
https://zhuanlan.zhihu.com/p/42214716 本文是“基于Tensorflow高阶API构建大规模分布式深度学习模型系列”的第五篇,旨在通过一个完整的案例巩固一下前面几篇 ...
- 深度学习_1_神经网络_4_分布式Tensorflow
分布式Tensorflow 单机多卡(gpu) 多级多卡(分布式) 自实现分布式 API: 1,创建一个tf.train.ClusterSpec,用于对集群的所有任务进行描述,该描述对于所有任务相 ...
- 分布式TensorFlow集群local server使用详解
通过local server理解分布式TensorFlow集群的应用与实现. 简介 TensorFlow从0.8版本开始,支持分布式集群,并且自带了local server方便测试. Local ...
- 理解和实现分布式TensorFlow集群完整教程
手把手教你搭建分布式集群,进入生产环境的TensorFlow 分布式TensorFlow简介 前一篇<分布式TensorFlow集群local server使用详解>我们介绍了分布式Ten ...
- Tensorflow学习笔记4:分布式Tensorflow
简介 Tensorflow API提供了Cluster.Server以及Supervisor来支持模型的分布式训练. 关于Tensorflow的分布式训练介绍可以参考Distributed Tenso ...
- tensorflow分布式训练
https://blog.csdn.net/hjimce/article/details/61197190 tensorflow分布式训练 https://cloud.tencent.com/dev ...
随机推荐
- 允许发生http请求
- JSON-java
import net.sf.json.JSONArray; import net.sf.json.JSONObject; JSONObject jsonObject1 = new JSONObject ...
- CodeForces - 1087F:Rock-Paper-Scissors Champion(set&数状数组)
n players are going to play a rock-paper-scissors tournament. As you probably know, in a one-on-one ...
- ConfigUtil读取配置文件
package utils; import java.util.ResourceBundle; public class ConfigUtil { private static ResourceBun ...
- dfs 与 剪枝
http://blog.csdn.net/u010700335/article/details/44095171
- (转)函数库调用 VS 系统调用
Linux下对文件操作有两种方式:系统调用(system call)和库函数调用(Library functions).可以参考<Linux程序设计>(英文原版为<Beginning ...
- Start Developing iOS Apps (Swift) 开始开发iOS应用(Swift)
http://www.cnblogs.com/tianjian/category/704953.html 构建基础的用户界面 Build a Basic UI http://www.cnblogs.c ...
- nyoj 某种序列
某种序列 时间限制:3000 ms | 内存限制:65535 KB 难度:4 描述 数列A满足An = An-1 + An-2 + An-3, n >= 3 编写程序,给定A0, A1 ...
- 【转】每天一个linux命令(49):at命令
原文网址:http://www.cnblogs.com/peida/archive/2013/01/05/2846152.html 在windows系统中,windows提供了计划任务这一功能,在控制 ...
- mysql复制表结构create table as和like的区别
对于MySQL的复制相同表结构方法,有create table as 和create table like 两种,区别是什么呢? create table t2 as select * from t1 ...