这一篇论文很不错,也很有价值;它重新思考了googLeNet的网络结构--Inception architecture,在此基础上提出了新的改进方法;
文章的一个主导目的就是:充分有效地利用computation;

第一部分: 文章提出了四个principles:

原则1:设计网络的时候需要避免 representational bottlenecks; 什么意思呢? 文章中说: 层与层之间进行 information 传递时,要避免这个过程中的数据的extreme compression,也就是说,数据的 scale 不能减小的太快;(数据从输入到输出大致是减少的,这个变化过程一定要gently,而不是快速的,    一定是慢慢的变少。。。。。。)       当数据的维数extreme下降的时候,就相当于引入了 representational bottelneck.

原则2:没有怎么看明白什么意思啊?复制过来。Higher dimensional representations are easier to process locally within a network. Increasing the activations per tile in a convolutional network allows for more

disentangled features. The resulting networks will train faster.  (可以结合 figure7 下面的注释, 我感觉: 在高维表示时,对于局部的特征更容易处理,意思就是local 卷积,用1*1啦, 或3*3, 别用太大的)

原则3: spatial aggregation can be done over lower dimensional embedding without much or any loss in representational power.    直接翻译真的不会翻译啊

原则4: 应该均衡网络的宽度与深度;

第二部分:网络的改进方法:

基于以上原则,开始对网络进行改进了。

1. 把大的卷积层分解为小的卷积层,提高计算效率:

第一种:可以把一个5*5的卷积卷积层分解成两个 3*3 的卷积层。       一个细节就是:把底层的 filters 为m 时, 上层的filters 为 n 时,这时两层的小的卷积层的每一个filters 为多少呢? 细节2: 当原来的 激活函数为线性激活函数时,现在变为两层的激活函数如何选择?(文中说明了全部使用 relu 激活函数会好一些)

2. 非对称分解:

把一个 n*n 的卷积层分解为两个 1*N 和 N*1 的卷积层;         (文中说了这种分解在网络的开始几层效果垃圾, but is gives very good result on medium grid-sizes)

3.  auxiliary classifiers 分类器的真正作用

文章都过实验发现 辅助分类器的真正作用为:regularizer。  意思就是吧,这个辅助分类器并不会加快网络的训练,不会加快 low-level 特征的 evlove , 它只会在最后的时候提高了一点 performance. 文章还说了,如果加上 batch-mormalized 效果更好一些,这也说明了 batch-normalized 也算一种 regularizer吧。

4. 有效的 grid-size 的reduction 的方法 ,即减少 feature map 的size 的方法:

文中出发点:1 ,避免 representational bottleneck ,其实我理解的就是避免 data的 dimension 急剧下降,一定也慢慢的来,别太快了;   2, 提高计算效率;

下图中的两种方法不满足条件:(左边不满足条件1, 右边不满足条件2)

下图的方法为论文中提出来的:

5. Label smoothing Regularization 方法:

这里要涉及到了一些计算过程,用语言说明一下:网络采用softmax分类器以及交叉熵函数作为loss函数时,对于类别 K 的最上层的导数等于:网络实际输出的 类别 K 的后验概率 - 真实的类别 K的后验概率;     而真实的类别 K的后验概率 要么为1,要么为0. 这个容易出一个问题: 1,过拟合,为什么呢?这样会使促使 网络去学习 的实际输出的 类别 K 的后验概率为 1 或0 ,it is not guaranteed to generalize; 2, 这个也限制了导数的变化, 因为吧, 容易上层数为0 啊。。( 自己推导好好理解一下)

所以呢,文中提出了一个方法:  真实的类别 K的后验概率别这个confident (要么为1 要么为0,不好,虽然后验概率就是这样的),  然后引入了:

其中的u(k)是自己引入的, 文章用了均匀分布; 另外文章也建议了使用训练样本中的 k 的分布来表示 u(k), 其实吧,训练样本中的每一个类别的样本可能差不多相同吧,所以呢,用均匀分布也挺合适的;

第三部分: Inception V-2网络;

第四部分:训练方法:

看看,参考文献很好;

第五部分:如何处理 small object的分类问题?

由于 object 比较小,所以呢, 像素少, 分辨率低,怎么办?

文中呢,通过试验说明了在计算力相同的情况下,不同的分辨率的输入的效果其实差不多的。

所以呢,当输入的分辨率低时,适当地调节网络的前几层,来保证 computational cost 相同 ,这样的话,最终的 perpormance 其实没有多大的差别的;

第六部分:对比实验:

这一部分对比了其它的实验结果, 注意:Inception-V3.

参考文献:Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 2818-2826.

Rethinking the inception architecture for computer vision的 paper 相关知识的更多相关文章

  1. inception_v2版本《Rethinking the Inception Architecture for Computer Vision》(转载)

    转载链接:https://www.jianshu.com/p/4e5b3e652639 Szegedy在2015年发表了论文Rethinking the Inception Architecture ...

  2. 图像分类(三)GoogLenet Inception_v3:Rethinking the Inception Architecture for Computer Vision

    Inception V3网络(注意,不是module了,而是network,包含多种Inception modules)主要是在V2基础上进行的改进,特点如下: 将滤波器尺寸(Filter Size) ...

  3. Rethinking the Inception Architecture for Computer Vision

    https://arxiv.org/abs/1512.00567 Convolutional networks are at the core of most state-of-the-art com ...

  4. 【Network architecture】Rethinking the Inception Architecture for Computer Vision(inception-v3)论文解析

    目录 0. paper link 1. Overview 2. Four General Design Principles 3. Factorizing Convolutions with Larg ...

  5. 论文笔记——Rethinking the Inception Architecture for Computer Vision

    1. 论文思想 factorized convolutions and aggressive regularization. 本文给出了一些网络设计的技巧. 2. 结果 用5G的计算量和25M的参数. ...

  6. (转) WTF is computer vision?

        WTF is computer vision? Posted Nov 13, 2016 by Devin Coldewey, Contributor   Next Story   Someon ...

  7. Analyzing The Papers Behind Facebook's Computer Vision Approach

    Analyzing The Papers Behind Facebook's Computer Vision Approach Introduction You know that company c ...

  8. 计算机视觉和人工智能的状态:我们已经走得很远了 The state of Computer Vision and AI: we are really, really far away.

    The picture above is funny. But for me it is also one of those examples that make me sad about the o ...

  9. Computer Vision Tutorials from Conferences (3) -- CVPR

    CVPR 2013 (http://www.pamitc.org/cvpr13/tutorials.php) Foundations of Spatial SpectroscopyJames Cogg ...

随机推荐

  1. 解决myeclipse/eclipse创建或导入maven工程时引发的问题

    起因: 最近学习maven,按照教程把命令行创建的maven工程导入到eclipse/myeclipse,由于库中没有一些依赖包,所以在导入工程的时候开发工具自动下载依赖包.可是,由于天朝特殊环境的问 ...

  2. 《深入应用C++11:代码优化与工程级应用》开始发售

    我的新书<深入应用C++11:代码优化与工程级应用>已经开始在华章微店发售了,下面是链接. 京东发售链接 china-pub发售链接 亚马逊发售链接 天猫商城发售链接 适用读者:C++11 ...

  3. 【转】cocos2d-x动画加速与减速

    移步原帖传送门:cocos2d-x动画加速与减速 动画是游戏的必然要素之一,在整个游戏过程中,又有着加速.减速动画的需求.以塔防为例子,布塔的时候希望能够将游戏减速,布好塔后,则希望能将游戏加速:当某 ...

  4. 转webstorm的快捷键

    止 静 java android 转-webstorm快捷键 默认配置-Eclipse的常用快捷键对照表 查找/代替 Webstorm快捷键 Eclipse快捷键 说明 ctrl+shift+N ct ...

  5. golang初始化结构体数组

    最近组里新项目要求用go来写,没办法只能边看文档边写代码,今天遇到郁闷的问题,查了好久最终发现居然是一个标点符号的导致的,遂纪录之 刚刚给一个接口写单元测试时想初始化一个结构体数组,然后遍历该数组并建 ...

  6. 前端js上传文件插件

    1. plupload文件上传 2.ajaxfileupload文件上传

  7. js判断浏览器内核和版本(包括手机端设备)

    var X, xue;xue = xue || function(expr, fn) {    return xue.dom ? xue.dom(expr, fn) : {};};X = xue;wi ...

  8. java多线程16:join()的使用

    讲解join()方法之前请确保对于即wait()/notify()/notifyAll()机制已熟练掌握.可以参考前面的笔记 join()方法的作用是等待线程销毁.join()方法反应的是一个很现实的 ...

  9. 分类算法----k近邻算法

    K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的 ...

  10. [转载]为何 Emacs 和 Vim 被称为两大神器

    Emacs 是神的编辑器,而 Vim 是编辑器之神.二者为何会有如此美誉,且听本文向你一一道来. 目 录 0. 序章:神器的传说 1. 无敌的可扩展性 1.1 可扩展性给了软件强大的生命 1.2 Em ...