C. Vasya and Robot
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Vasya has got a robot which is situated on an infinite Cartesian plane, initially in the cell (0,0)(0,0). Robot can perform the following four kinds of operations:

  • U — move from (x,y)(x,y) to (x,y+1)(x,y+1);
  • D — move from (x,y)(x,y) to (x,y−1)(x,y−1);
  • L — move from (x,y)(x,y) to (x−1,y)(x−1,y);
  • R — move from (x,y)(x,y) to (x+1,y)(x+1,y).

Vasya also has got a sequence of nn operations. Vasya wants to modify this sequence so after performing it the robot will end up in (x,y)(x,y).

Vasya wants to change the sequence so the length of changed subsegment is minimum possible. This length can be calculated as follows: maxID−minID+1maxID−minID+1, where maxIDmaxID is the maximum index of a changed operation, and minIDminID is the minimum index of a changed operation. For example, if Vasya changes RRRRRRR to RLRRLRL, then the operations with indices 22, 55 and 77 are changed, so the length of changed subsegment is 7−2+1=67−2+1=6. Another example: if Vasya changes DDDD to DDRD, then the length of changed subsegment is 11.

If there are no changes, then the length of changed subsegment is 00. Changing an operation means replacing it with some operation (possibly the same); Vasya can't insert new operations into the sequence or remove them.

Help Vasya! Tell him the minimum length of subsegment that he needs to change so that the robot will go from (0,0)(0,0) to (x,y)(x,y), or tell him that it's impossible.

Input

The first line contains one integer number n (1≤n≤2⋅105)n (1≤n≤2⋅105) — the number of operations.

The second line contains the sequence of operations — a string of nn characters. Each character is either U, D, L or R.

The third line contains two integers x,y (−109≤x,y≤109)x,y (−109≤x,y≤109) — the coordinates of the cell where the robot should end its path.

Output

Print one integer — the minimum possible length of subsegment that can be changed so the resulting sequence of operations moves the robot from (0,0)(0,0) to (x,y)(x,y). If this change is impossible, print −1−1.

Examples
input

Copy
5
RURUU
-2 3
output

Copy
3
input

Copy
4
RULR
1 1
output

Copy
0
input

Copy
3
UUU
100 100
output

Copy
-1
Note

In the first example the sequence can be changed to LULUU. So the length of the changed subsegment is 3−1+1=33−1+1=3.

In the second example the given sequence already leads the robot to (x,y)(x,y), so the length of the changed subsegment is 00.

In the third example the robot can't end his path in the cell (x,y)(x,y).

 

【题意】

一个机器人从(0,0)出发,输入一段指令字符串,和机器人需要在指定步数后到达的终点,问如果机器人需要在指定步数内到达终点,那么需要对原指令字符串做出怎样的改变,假设改变 字符串的最大下标为maxindex,改变字符串的最小下标为minindex,输出最小的 maxindex-minindex+1,即,输出最小的改变字符串的连续区间长度(该区间内的字符不一定要全部发生改变)

【分析】

首先考虑在什么情况下,无论如何改动这个字符串都不能到达指定位置

1、字符串长度小于从原点到指定位置的距离

2、字符串长度与从原点到指定位置的奇偶性不同

在除去这两种情况下,剩余的情况都一定有答案。鉴于其可能解时连续的整数,因此,可以用二分枚举所有可能,进而找出最小的连续区间长度。

应注意,当根据给定字符串移动就能到达指定位置,即最小区间为0时,应排除在二分枚举的情况之外。

实际写代码时,特殊情况可以被包含于普通情况。但可以作为思路的引子。

当枚举长度为 x 时,考虑在 string 中所有长度为 x 的子串,是否存在一个子串可行。若存在,尝试缩短子串长度;若不存在,延长子串长度。

判断子串是否可行的方法:

设全集为给定字符串,沿着子串的补集移动,记这样移动到的点为 pos 。求 pos 到 指定位置 的距离,记为 d ,记子串的长度为 len。满足如下两种情况,则子串可行。

1、d <= len

2、(len-d)%2==0

【代码】

#include<cstdio>
#include<cstdlib>
using namespace std;
const int N=2e5+5;
int n,ex,ey,sx[N],sy[N];char s[N];
inline bool check(int m){//假定最佳区间长度为m
for(int i=1;i+m-1<=n;i++){
int decx=sx[n]-sx[i+m-1]+sx[i-1];
int decy=sy[n]-sy[i+m-1]+sy[i-1];
//不需要改变的区间恒存在的贡献
int nedx=ex-decx;
int nedy=ey-decy;
//需要改变的区间中,x和y想要到达终点,所需恰好作出的贡献
if(abs(nedx)+abs(nedy)<=m&&!(m-abs(nedx)-abs(nedy)&1)) return 1;
//(abs(tx)+abs(ty)位字符做出使该人刚好到达终点的贡献,
//剩下位的字符如果是偶数,就可以让其多走的路程两两抵消,从而刚好到达终点
}
return 0;
}
int main(){
scanf("%d%s%d%d",&n,s+1,&ex,&ey);
for(int i=1;i<=n;i++){
sx[i]=sx[i-1]+(s[i]=='L'?-1:(s[i]=='R'?1:0));
sy[i]=sy[i-1]+(s[i]=='D'?-1:(s[i]=='U'?1:0));
}
int l=0,r=n,mid,ans=-1;
while(l<=r){
mid=l+r>>1;
if(check(mid)){
ans=mid;
r=mid-1;
}
else{
l=mid+1;
}
}
printf("%d\n",ans);
return 0;
}

CF 1073C Vasya and Robot(二分答案)的更多相关文章

  1. Codeforces 1073C Vasya and Robot 【二分】

    <题目链接> 题目大意: 一个机器人从(0,0)出发,输入一段指令字符串,和机器人需要在指定步数后到达的终点,问如果机器人需要在指定步数内到达终点,那么需要对原指令字符串做出怎样的改变,假 ...

  2. Educational Codeforces Round 53 (Rated for Div. 2) C Vasya and Robot 二分

    题目:题目链接 思路:对于x方向距离与y方向距离之和大于n的情况是肯定不能到达的,另外,如果n比abs(x) + abs(y)大,那么我们总可以用UD或者LR来抵消多余的大小,所以只要abs(x) + ...

  3. C. Vasya and Robot二分

    1.题目描述 Vasya has got a robot which is situated on an infinite Cartesian plane, initially in the cell ...

  4. CF 672D Robin Hood(二分答案)

    D. Robin Hood time limit per test 1 second memory limit per test 256 megabytes input standard input ...

  5. cf C. Vasya and Robot

    http://codeforces.com/contest/355/problem/C 枚举L和R相交的位置. #include <cstdio> #include <cstring ...

  6. Codeforces 1073C:Vasya and Robot(二分)

    C. Vasya and Robot time limit per test: 1 secondmemory limit per test: 256 megabytesinput: standard ...

  7. Educational Codeforces Round 53 (Rated for Div. 2) C. Vasya and Robot 【二分 + 尺取】

    任意门:http://codeforces.com/contest/1073/problem/C C. Vasya and Robot time limit per test 1 second mem ...

  8. CF 371C-Hamburgers[二分答案]

    C. Hamburgers time limit per test 1 second memory limit per test 256 megabytes input standard input ...

  9. Cf Round #403 B. The Meeting Place Cannot Be Changed(二分答案)

    The Meeting Place Cannot Be Changed 我发现我最近越来越zz了,md 连调程序都不会了,首先要有想法,之后输出如果和期望的不一样就从输入开始一步一步地调啊,tmd现在 ...

随机推荐

  1. matlabr2015b安装教程

    R2015b MATLAB破解版安装教程 MATLAB和Mathematica.Maple并称为三大数学软件.它在数学类科技应用软件中在数值计算方面首屈一指.MATLAB可以进行矩阵运算.绘制函数和数 ...

  2. 激活函数ReLU、Leaky ReLU、PReLU和RReLU

    “激活函数”能分成两类——“饱和激活函数”和“非饱和激活函数”. sigmoid和tanh是“饱和激活函数”,而ReLU及其变体则是“非饱和激活函数”.使用“非饱和激活函数”的优势在于两点:    1 ...

  3. crontab(定时任务操作)

    定时任务顾名思义就是在某一时间点自动进行任务操作.在做Pgsql的备份利用crontab进行定时操作, 使用起来比较方便.故分享具体的定时编辑命令:crontab -e 首先从crontab的文件分析 ...

  4. Effective STL读书笔记

    Effective STL 读书笔记 本篇文字用于总结在阅读<Effective STL>时的笔记心得,只记录书上描写的,但自己尚未熟练掌握的知识点,不记录通用.常识类的知识点. STL按 ...

  5. webdriver 日期控件的处理

    http://www.cnblogs.com/liu-ke/p/4200736.html http://blog.csdn.net/wanglha/article/details/44620627 h ...

  6. git statsh命令报错解决

    git stash命令主要用于当在一个分支的开发工作未完成,却又要切换到另外一个分支进行开发的时候,除了commit原分支的代码改动的方法外,提供暂存代码的方式. git stash命令参考这篇:ht ...

  7. mysql日期问题

    1.在java中,在当前时间的基础上增加30天.Date d = new Date();   SimpleDateFormat df = new SimpleDateFormat("yyyy ...

  8. 土办法 填充NAS空间

    最近需要把一个1.8TB的NAS 塞满,网上东拼西凑,找了个办法 写脚本,然后保存为tt40.sh, 并上传到NAS中. #!/bin/sh echo "space2->space11 ...

  9. 复习js

    js写在页面最后如果放在前面,需要加window.onload=function(){)常见的两种输出方式 在网页中弹出显示框,显示信息 alert() 在控制台输出消息,一般用来调试程序consol ...

  10. c++const关键字---15

    原创博文,转载请标明出处--周学伟 http://www.cnblogs.com/zxouxuewei/ const是一个C++语言的限定符,它限定一个变量不允许被改变.使用const在一定程度上可以 ...