mysql 超大数据/表管理技巧
如果你对长篇大论没有兴趣,也可以直接看看结果,或许你对结果感兴趣。在实际应用中经过存储、优化可以做到在超过9千万数据中的查询响应速度控制在1到20毫秒。看上去是个不错的成绩,不过优化这条路没有终点,当我们的系统有超过几百人、上千人同时使用时,仍然会显的力不从心。
目录:
分区存储
优化查询
改进分区
模糊搜索
持续改进的方案
正文:
分区存储
对于超大的数据来说,分区存储是一个不错的选择,或者说这是一个必选项。对于本例来说,数据记录来源不同,首先可以根据来源来划分这些数据。但是仅仅这样还不够,因为每个来源的分区的数据都可能超过千万。这对数据的存储和查询还是太大了。MySQL5.x以后已经比较好的支持了数据分区以及子分区。因此数据就采用分区+子分区来存储。
下面是基本的数据结构定义:
复制代码 代码如下:
CREATE TABLE `tmp_sampledata` (
`id` bigint(20) unsigned NOT NULL AUTO_INCREMENT,
`username` varchar(32) DEFAULT NULL,
`passwd` varchar(32) DEFAULT NULL,
`email` varchar(64) DEFAULT NULL,
`nickname` varchar(32) DEFAULT NULL,
`siteid` varchar(32) DEFAULT NULL,
`src` smallint(6) NOT NULL DEFAULT '0′,
PRIMARY KEY (`id`,`src`)
) ENGINE=MyISAM AUTO_INCREMENT=95660181 DEFAULT CHARSET=gbk
/*!50500 PARTITION BY LIST COLUMNS(src)
SUBPARTITION BY HASH (id)
SUBPARTITIONS 5
(PARTITION pose VALUES IN (1) ENGINE = MyISAM,
PARTITION p2736 VALUES IN (2) ENGINE = MyISAM,
PARTITION p736736 VALUES IN (3) ENGINE = MyISAM,
PARTITION p3838648 VALUES IN (4) ENGINE = MyISAM,
PARTITION p842692 VALUES IN (5) ENGINE = MyISAM,
PARTITION p7575 VALUES IN (6) ENGINE = MyISAM,
PARTITION p386386 VALUES IN (7) ENGINE = MyISAM,
PARTITION p62678 VALUES IN (8) ENGINE = MyISAM) */
对于拥有分区及子分区的数据表,分区条件(包括子分区条件)中使用的数据列,都应该定义在primary key 或者 unique key中。详细的分区定义格式,可以参考MySQL的文档。上面的结构是第一稿的存储方式(后文还将进行修改)。采用load data infile的方式加载,用时30分钟加载8千万记录。感觉还是挺快的(bulk_insert_buffer_size=8m)。
基本查询优化
数据装载完毕后,我们测试了一个查询:
复制代码 代码如下:
mysql explain select * from tmp_sampledata where id=9562468\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: tmp_sampledata
type: ref
possible_keys: PRIMARY
key: PRIMARY
key_len: 8
ref: const
rows: 8
Extra:
1 row in set (0.00 sec)
这是毋庸置疑的,通过id进行查询是使用了主键,查询速度会很快。但是这样的做法几乎没有意义。因为对于终端用户来说,不可能知晓任何的资料的id的。假如需要按照username来进行查询的话:
复制代码 代码如下:
mysql explain select * from tmp_sampledata where username = ‘yourusername'\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: tmp_sampledata
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 74352359
Extra: Using where
1 row in set (0.00 sec)
mysql explain select * from tmp_sampledata where src between 1 and 7 and username = ‘yourusername'\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: tmp_sampledata
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 74352359
Extra: Using where
1 row in set (0.00 sec)
那这个查询就没法用了。根本就没人能等待一个上亿表的全表搜索!这是我们就考虑是否给username创建一个索引,这样肯定会提高查询速度:
create index idx_username on tmp_sampledata(username);
这个创建索引的时间很久,似乎超过了数据装载时间,不过好歹建好了。
复制代码 代码如下:
mysql explain select * from tmp_sampledata2 where username = ‘yourusername'\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: tmp_sampledata2
type: ref
possible_keys: idx_username
key: idx_username
key_len: 66
ref: const
rows: 80
Extra: Using where
1 row in set (0.00 sec)
和预期的一样,这个查询使用了索引,查询速度在可接受范围内。
但是这带来了另外一个问题:创建索引需要而外的空间!!当我们对username和email都创建索引时,空间的使用大幅度的提升!这同样不是我们期望看到的(无奈的选择?)。
除了使用索引,并保证其在查询中能使用到此索引外,分区的关键字段是一个很重要的优化因素,比如下面的这个例子:
复制代码 代码如下:
mysql explain select id from tsampledata where username='abcdef'\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: tsampledata
type: ref
possible_keys: idx_sampledata_username
key: idx_sampledata_username
key_len: 66
ref: const
rows: 80
Extra: Using where
1 row in set (0.00 sec)
mysql explain select id from tsampledata where username='abcdef' and src in (2,3,4,5)\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: tsampledata
type: ref
possible_keys: idx_sampledata_username
key: idx_sampledata_username
key_len: 66
ref: const
rows: 40
Extra: Using where
1 row in set (0.01 sec)
mysql explain select id from tsampledata where username='abcdef' and src in (2)\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: tsampledata
type: ref
possible_keys: idx_sampledata_username
key: idx_sampledata_username
key_len: 66
ref: const
rows: 10
Extra: Using where
1 row in set (0.00 sec)
mysql explain select id from tsampledata where username='abcdef' and src in (2,3)\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: tsampledata
type: ref
possible_keys: idx_sampledata_username
key: idx_sampledata_username
key_len: 66
ref: const
rows: 20
Extra: Using where
1 row in set (0.00 sec)
同一个查询语句在根据是否针对分区限定做查询时,查询成本相差很大:
where username='abcdef' rows: 80
where username='abcdef' and src in (2,3,4,5) rows: 40
where username='abcdef' and src in (2) rows: 10
where username='abcdef' and src in (2,3) rows: 20
从分析中看出,当根据src(分区表的分区字段)进行查询限定时,被影响的数目(rows)在发生着变化。rows:80代表着需要对8个分区进行搜索。
改进数据存储:另一种分区格式
既然在统计应用中,最多用的是通过username, email进行数据查询,那么在表存储时,应该考虑使用username,email进行分区,而不是通过id。因此重新创建分区表,导入数据:
复制代码 代码如下:
CREATE TABLE `tmp_sampledata` (
`id` bigint(20) unsigned NOT NULL,
`username` varchar(32) NOT NULL DEFAULT ”,
`passwd` varchar(32) DEFAULT NULL,
`email` varchar(64) NOT NULL DEFAULT ”,
`nickname` varchar(32) DEFAULT NULL,
`siteid` varchar(32) DEFAULT NULL,
`src` smallint(6) NOT NULL DEFAULT '0′,
primary KEY (`src`,`username`,`email`, `id`)
) ENGINE=MyISAM DEFAULT CHARSET=gbk
PARTITION BY LIST COLUMNS(src)
SUBPARTITION BY KEY (username,email)
SUBPARTITIONS 10
(PARTITION pose VALUES IN (1) ENGINE = MyISAM,
PARTITION p2736 VALUES IN (2) ENGINE = MyISAM,
PARTITION p736736 VALUES IN (3) ENGINE = MyISAM,
PARTITION p3838648 VALUES IN (4) ENGINE = MyISAM,
PARTITION p842692 VALUES IN (5) ENGINE = MyISAM,
PARTITION p7575 VALUES IN (6) ENGINE = MyISAM,
PARTITION p386386 VALUES IN (7) ENGINE = MyISAM,
PARTITION p62678 VALUES IN (8) ENGINE = MyISAM)?;
这个定义没什么问题,按照预期,它将根据primary key来进行数据表分区。但是这有一个非常非常严重的性能问题:数据在load data infile的时候,同时对数据进行索引创建。这大大延长了数据装载时间,同样是不可忍受的情况。上面这个例子,如果建表时启用了 primary key 或者 unique key, 在我的测试系统上,load data infile执行了超过12小时。而下面这个:
复制代码 代码如下:
CREATE TABLE `tmp_sampledata` (
`id` bigint(20) unsigned NOT NULL,
`username` varchar(32) NOT NULL DEFAULT ”,
`passwd` varchar(32) DEFAULT NULL,
`email` varchar(64) NOT NULL DEFAULT ”,
`nickname` varchar(32) DEFAULT NULL,
`siteid` varchar(32) DEFAULT NULL,
`src` smallint(6) NOT NULL DEFAULT '0′
) ENGINE=MyISAM DEFAULT CHARSET=gbk
PARTITION BY LIST COLUMNS(src)
SUBPARTITION BY KEY (username,email)
SUBPARTITIONS 10
(PARTITION pose VALUES IN (1) ENGINE = MyISAM,
PARTITION p2736 VALUES IN (2) ENGINE = MyISAM,
PARTITION p736736 VALUES IN (3) ENGINE = MyISAM,
PARTITION p3838648 VALUES IN (4) ENGINE = MyISAM,
PARTITION p842692 VALUES IN (5) ENGINE = MyISAM,
PARTITION p7575 VALUES IN (6) ENGINE = MyISAM,
PARTITION p386386 VALUES IN (7) ENGINE = MyISAM,
PARTITION p62678 VALUES IN (8) ENGINE = MyISAM)?;
数据装载仅仅用了5分钟:
mysql load data infile ‘cvsfile.txt' into table tmp_sampledata fields terminated by ‘\t' escaped by ”;
Query OK, 74352359 rows affected, 65535 warnings (5 min 23.67 sec)
Records: 74352359 Deleted: 0 Skipped: 0 Warnings: 51267046
So,所有的问题,又回到了2.上
测试查询中的模糊搜索
对于创建好索引的大数据表,一般般的针对性的查询,应该可以满足需要。但是有些查询可能不能通过索引来发挥效率,比如查询以 163.com 结尾的邮箱:
select … from … where email like ‘%163.com'
即便数据针对 email 建立有索引,上面的查询是用不到那个索引的。如果我们使用的是 oracle,那么还可以建立一个反向索引,但是mysql不支持反向索引。所以如果发生类似的查询,只有两种方案可以:
通过数据冗余,把需要的字段反转一遍另外保存,并创建一个索引
这样上面的那个查询可以通过 where email like ‘moc.361%' 来完成,但是这个成本(存储、更新)太高昂了
通过全文检索fulltext来实现。不过mysql同样在分区表上不支持fulltext(或许等待以后的版本吧。)
自己做分词fulltext
没有最终方案
创建一个不含任何索引、键的分区表;
导入数据;
创建索引;
因为创建索引要花很久时间,此处做了个小小调整,提高myisam索引的排序空间为1G(默认是8m):
mysql set myisam_sort_buffer_size=1048576000;
Query OK, 0 rows affected (0.00 sec)
mysql create index idx_username_src on tmp_sampledata (username,src);
Query OK, 74352359 rows affected (7 min 13.11 sec)
Records: 74352359 Duplicates: 0 Warnings: 0
mysql create index idx_email_src on tmp_sampledata (email,src);
Query OK, 74352359 rows affected (10 min 48.30 sec)
Records: 74352359 Duplicates: 0 Warnings: 0
mysql create index idx_src_username_email on tmp_sampledata(src,username,email);
Query OK, 74352359 rows affected (16 min 5.35 sec)
Records: 74352359 Duplicates: 0 Warnings: 0
实际应用中,此表可能不需要这么多索引的,都建立一遍,只是为了展示一下创建的速度而已。
实际应用中的效果
存储的问题暂时解决到这里了,接下来经过了一系列的服务器参数调整以及查询的优化,我只能做到在这个超过9千万数据中的查询响应速度控制在1到20毫秒。听上去是个不错的成绩。但是当我们的系统有超过几百个人同时使用时,仍然显的力不从心。或许日后还有机会能更优化这个存储与查询。让我慢慢期待吧。
mysql 超大数据/表管理技巧的更多相关文章
- MySQL-02 数据表管理
学习要点 数据类型 数据字段属性 数据表的类型及存储位置 索引 数据表对象管理 数据类型 数据库中的数据类型分为字段类型和值类型,定义如下: 在设计数据表字段的时候,字段类型定义为三大类:数值类.字符 ...
- MySQL基本库表管理
基本管理指令 mysql登陆 第一种 [root@wei ~]# mysql -u root -p 第二种(带参输入) [root@wei ~]# mysql -uroot -proot 注意:每个命 ...
- MySQL为数据表的指定字段插入数据
username not null 没有默认值/有默认值 insert不插入username字段 均不报错 2014年07月23日21:05 百科369 MySQL为数据表的指定字段插入数据 ...
- MySQL 删除数据表
MySQL 删除数据表 MySQL中删除数据表是非常容易操作的, 但是你再进行删除表操作时要非常小心,因为执行删除命令后所有数据都会消失. 语法 以下为删除MySQL数据表的通用语法: DROP TA ...
- MySQL 创建数据表
MySQL 创建数据表 创建MySQL数据表需要以下信息: 表名 表字段名 定义每个表字段 语法 以下为创建MySQL数据表的SQL通用语法: CREATE TABLE table_name (col ...
- MySQL查询数据表中数据记录(包括多表查询)
MySQL查询数据表中数据记录(包括多表查询) 在MySQL中创建数据库的目的是为了使用其中的数据. 使用select查询语句可以从数据库中把数据查询出来. select语句的语法格式如下: sele ...
- MySQL修改数据表存储引擎的3种方法介绍
这篇文章主要介绍了MySQL修改数据表存储引擎的3种方法介绍,分别是直接修改.导出导入.创建插入3种方法, 可以参考下 MySQL作为最常用的数据库,经常遇到各种各样的问题.今天要说的就是表存储引 ...
- mysql(三) 数据表的基本操作操作
mysql(三) 数据表的基本操作操作 创建表,曾删改查,主键,外键,基本数据类型. 1. 创建表 create table 表名( 列名 类型 是否可以为空, 列名 类型 是否可以为空 )ENGIN ...
- MySQL对数据表进行分组查询
MySQL对数据表进行分组查询(GROUP BY) GROUP BY关键字可以将查询结果按照某个字段或多个字段进行分组.字段中值相等的为一组.基本的语法格式如下: GROUP BY 属性名 [HAVI ...
随机推荐
- Linux系统——DHCP
DHCP定义DHCP服务是负责IP.掩码.网关地址.DNS地址等自动分发的软件服务DHCP的分配方式(1)自动分配:分配到一个IP地址后永久使用(2)手动分配:由DHCP服务器管理员专门指定IP地址( ...
- System.arraycopy方法详解
- LeetCode-MinimumDepthOfBinaryTree
题目: Given a binary tree, find its minimum depth. The minimum depth is the number of nodes along the ...
- Linux基础命令---ziinfo
zipinfo 在不解压的情况下,获取zip压缩文件的的详细信息.zipinfo列出了ZIP档案中有关文件的技术信息,最常见的是在MS-DOS系统上.这些信息包括文件访问权限.加密状态.压缩类型.版本 ...
- Python3.x(windows系统)安装libxml2库
Python3.x(windows系统)安装libxml2库 cmd安装命令: pip install lxml 执行结果: 再执行命令: pip install virtualenv 执行结果:
- jQuery 概述
jQuery 概述 版权声明:未经博主授权,内容严禁分享转载! 什么是 JavaScript 类库 JavaScript 类库是指已经被封装好的一系列 JavaScript 函数,能够实现一些特定的功 ...
- tomcat热启动没问题, 访问项目报500解决办法
新建maven项目 添加热启动 启动访问项目报错 报错提示 解决办法 思路:包冲突 在pom.xml中添加servlet <dependency> <groupId>javax ...
- 20145317彭垚《网络对抗》Exp2 后门原理与实践
20145317彭垚<网络对抗>Exp2 后门原理与实践 基础问题回答 例举你能想到的一个后门进入到你系统中的可能方式? 在网上下载软件的时候,后门很有可能被捆绑在下载的软件当中: 例举你 ...
- vs下C++内存泄露检测
本文原链接: http://www.cnblogs.com/zouzf/p/4152279.html 参考文章: http://msdn.microsoft.com/zh-cn/library/x98 ...
- Duilib 实现右下角弹出像QQ新闻窗口,3秒后窗口透明度渐变最后关闭,若在渐变过程中鼠标放到窗口上,窗口恢复最初状态(二)
效果: 1.定义两个个定时器ID #define ID_TIMER_DISPLAY_DELAY 30 #define ID_TIMER_DISPLAY_CLOSE 40 2.添加一个成员函数和成员变量 ...