题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1845

给定100个三角形,求三角形面积并。

戴神模板太可怕。直接调用函数秒掉。思路有点繁琐,不大清楚。贴一个代码。

代码:

/* ***********************************************
Author :rabbit
Created Time :2014/7/3 22:46:38
File Name :2.cpp
************************************************ */
#pragma comment(linker, "/STACK:102400000,102400000")
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <sstream>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <string>
#include <time.h>
#include <math.h>
#include <queue>
#include <stack>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define eps 1e-8
#define pi acos(-1.0)
typedef long long ll;
int dcmp(double x){
if(fabs(x)<eps)return 0;
return x>0?1:-1;
}
struct Point{
double x,y;
Point(double _x=0,double _y=0){
x=_x;y=_y;
}
};
Point operator + (Point a,Point b){
return Point(a.x+b.x,a.y+b.y);
}
Point operator - (Point a, Point b){
return Point(a.x-b.x,a.y-b.y);
}
Point operator * (Point a,double p){
return Point(a.x*p,a.y*p);
}
Point operator / (Point a,double p){
return Point(a.x/p,a.y/p);
}
bool operator < (const Point &a,const Point &b){
return a.x<b.x||(a.x==b.x&&a.y<b.y);
}
bool operator == (const Point &a,const Point &b){
return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0;
}
double Dot(Point a, Point b){
return a.x*b.x+a.y*b.y;
}
double Length(Point a){
return sqrt(Dot(a,a));
}
double Angle(Point a,Point b){
return acos(Dot(a,b)/Length(a)/Length(b));
}
double angle(Point a){
return atan2(a.y,a.x);
}
double Cross(Point a,Point b){
return a.x*b.y-a.y*b.x;
}
Point GetLineIntersection(Point p,Point v,Point q,Point w){
Point u=p-q;
double t=Cross(w,u)/Cross(v,w);
return p+v*t;
}
struct polygon{
int n;
Point p[100];
double getarea(){
double sum=0;
for(int i=0;i<n;i++){
sum+=Cross(p[i],p[(i+1)%n]);
}
return fabs(sum)/2;
}
bool getdir(){
double sum=0;
for(int i=0;i<n;i++)
sum+=Cross(p[i],p[(i+1)%n]);
if(dcmp(sum)>0)return 1;
return 0;
}
};
struct polygons{
vector<polygon> p;
polygons(){
p.clear();
}
void push(polygon q){
if(dcmp(q.getarea()))p.push_back(q);
}
vector<pair<double,int> > e;
void ins(Point s,Point t,Point X,int i){
double r=fabs(t.x-s.x)>eps?(X.x-s.x)/(t.x-s.x):(X.y-s.y)/(t.y-s.y);
r=min(r,1.0);r=max(r,0.0);
e.push_back(make_pair(r,i));
}
double polyareaunion(){
double ans=0;
int c0,c1,c2;
for(int i=0;i<p.size();i++)
if(p[i].getdir()==0)
reverse(p[i].p,p[i].p+p[i].n);
for(int i=0;i<p.size();i++){
for(int k=0;k<p[i].n;k++){
Point &s=p[i].p[k],&t=p[i].p[(k+1)%p[i].n];
if(!dcmp(Cross(s,t)))continue;
e.clear();
e.push_back(make_pair(0.0,1));
e.push_back(make_pair(1.0,-1));
for(int j=0;j<p.size();j++)
if(i!=j){
for(int w=0;w<p[j].n;w++){
Point a=p[j].p[w];
Point b=p[j].p[(w+1)%p[j].n];
Point c=p[j].p[(w-1+p[j].n)%p[j].n];
c0=dcmp(Cross(t-s,c-s));
c1=dcmp(Cross(t-s,a-s));
c2=dcmp(Cross(t-s,b-s));
if(c1*c2<0)ins(s,t,GetLineIntersection(s,t-s,a,b-a),-c2);
else if(!c1&&c0*c2<0)ins(s,t,a,-c2);
else if(!c1&&!c2){
int c3=dcmp(Cross(t-s,p[j].p[(w+2)%p[j].n]-s));
int dp=dcmp(Dot(t-s,b-a));
if(dp&&c0)ins(s,t,a,dp>0?c0*((j>i)^(c0<0)):-(c0<0));
if(dp&&c3)ins(s,t,b,dp>0?-c3*((j>i)^(c3<0)):c3<0);
}
}
}
sort(e.begin(),e.end());
int ct=0;
double tot=0,last;
for(int j=0;j<e.size();j++){
if(ct==1)tot+=e[j].first-last;
ct+=e[j].second;
last=e[j].first;
}
ans+=Cross(s,t)*tot;
}
}
return fabs(ans)/2;
}
};
int main()
{
//freopen("data.in","r",stdin);
//freopen("data.out","w",stdout); int n;
while(~scanf("%d",&n)){
polygons ps;
double ans=0;
for(int i=0;i<n;i++){
polygon p1;
p1.n=3;
for(int j=0;j<p1.n;j++){
scanf("%lf%lf",&p1.p[j].x,&p1.p[j].y);
}
ps.push(p1);
}
printf("%.2f\n",ps.polyareaunion());
}
return 0;
}

BZOJ 1845三角形面积并的更多相关文章

  1. bzoj 1845: [Cqoi2005] 三角形面积并 扫描线

    1845: [Cqoi2005] 三角形面积并 Time Limit: 3 Sec  Memory Limit: 64 MBSubmit: 848  Solved: 206[Submit][Statu ...

  2. BZOJ 1845: [Cqoi2005] 三角形面积并 [计算几何 扫描线]

    1845: [Cqoi2005] 三角形面积并 Time Limit: 3 Sec  Memory Limit: 64 MBSubmit: 1151  Solved: 313[Submit][Stat ...

  3. CQOI2005 三角形面积并 和 POJ1177 Picture

    1845: [Cqoi2005] 三角形面积并 Time Limit: 3 Sec  Memory Limit: 64 MBSubmit: 1664  Solved: 443[Submit][Stat ...

  4. ytu 1058: 三角形面积(带参的宏 练习)

    1058: 三角形面积 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 190  Solved: 128[Submit][Status][Web Boar ...

  5. UVa 11437:Triangle Fun(计算几何综合应用,求直线交点,向量运算,求三角形面积)

    Problem ATriangle Fun Input: Standard Input Output: Standard Output In the picture below you can see ...

  6. OpenJudge计算概论-计算三角形面积【海伦公式】

    /*============================================== 计算三角形面积 总时间限制: 1000ms 内存限制: 65536kB 描述 平面上有一个三角形,它的 ...

  7. nyoj 67 三角形面积【三角形面积公式】

    三角形面积 时间限制:3000 ms  |  内存限制:65535 KB 难度:2   描述 给你三个点,表示一个三角形的三个顶点,现你的任务是求出该三角形的面积   输入 每行是一组测试数据,有6个 ...

  8. NYOJ 67 三角形面积(线代,数学)

    三角形面积 时间限制:3000 ms  |  内存限制:65535 KB 难度:2   描述 给你三个点,表示一个三角形的三个顶点,现你的任务是求出该三角形的面积   输入 每行是一组测试数据,有6个 ...

  9. TZOJ 2519 Regetni(N个点求三角形面积为整数总数)

    描述 Background Hello Earthling. We're from the planet Regetni and need your help to make lots of mone ...

随机推荐

  1. Service Account和其secrets 作用和场景,看了不亏。。

    Service Account概念的引入是基于这样的使用场景: 运行在pod里的进程需要调用Kubernetes API以及非Kubernetes API的其它服务.Service Account它并 ...

  2. yum安装docker报 No package docker available错误

    解决方案: yum install epel-release 然后再安装 CentOS6 yum install http://mirrors.yun-idc.com/epel/6/i386/epel ...

  3. Eclipse Indigo 3.7.0 安装GIT插件

    Eclipse上安装GIT插件EGit 首先打开Eclipse,然后点击Help>Install New Software>Add. Name:EGit Location: http:// ...

  4. ora2pg安装及卸载

    --ora2pg安装 tar xzf ora2pg-10.x.tar.gz  or tar xjf ora2pg-10.x.tar.bz2 cd ora2pg-10.x/ perl Makefile. ...

  5. PHP:第三章——PHP中控制函数的函数

    <pre> <?php header("Content-Type:text/html;charset=utf-8"); /******************** ...

  6. HDU 1710 二叉树遍历

    首先.先序遍历是先访问根节点.然后左节点 然后右节点.从根节点开始 直到它的子节点没有左节点才开始回溯访问上一个节点的右节点.同理.中序遍历 先访问左节点 然后是父节点 然后是右节点.从根节点开始 直 ...

  7. POJ 1062 最短路Dijstra

    汉语题... 题意正如你看到的酱... 看的解题报告.思路大概是把每个点看做最高等级.然后枚举所有当前可以访问的点.进行dijstra算法.找到此时到目标点最短路.枚举完之后找到最小的点就可以了. P ...

  8. C++11标准的智能指针、野指针、内存泄露的理解(日后还会补充,先浅谈自己的理解)

    1.野指针的概念.成因以及避免 首先,来说说什么是野指针,所谓野指针就是一个指向未申请访问受限的内存区域或者已经删除了的对象的指针. 什么意思呢?就是本来一个指针指向一个对象.一块内存,但是由于程序( ...

  9. L1-050 倒数第N个字符串

    给定一个完全由小写英文字母组成的字符串等差递增序列,该序列中的每个字符串的长度固定为 L,从 L 个 a 开始,以 1 为步长递增.例如当 L 为 3 时,序列为 { aaa, aab, aac, . ...

  10. MyEclipse WebSphere开发教程:安装和更新WebSphere 6.1, JAX-WS, EJB 3.0(一)

    你开学,我放价!MyEclipse线上狂欢继续!火热开启中>> [MyEclipse最新版下载] MyEclipse支持Java EE技术(如JAX-WS和EJB 3.0),它们以功能包的 ...