For a undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write a function to find all the MHTs and return a list of their root labels.

Format
The graph contains n nodes which are labeled from 0 to n - 1. You will be given the number n and a list of undirected edges (each edge is a pair of labels).

You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.

Example 1 :

Input: n = 4, edges = [[1, 0], [1, 2], [1, 3]]

        0
|
1
/ \
2 3 Output: [1]

Example 2 :

Input: n = 6, edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]

     0  1  2
\ | /
3
|
4
|
5 Output: [3, 4]

Note:

  • According to the definition of tree on Wikipedia: “a tree is an undirected graph in which any two vertices are connected by exactlyone path. In other words, any connected graph without simple cycles is a tree.”
  • The height of a rooted tree is the number of edges on the longest downward path between the root and a leaf.

这个题目思路来自于Solution, 类似于剥洋葱, 从leaves开始一层一层往里面剥, 依次更新leaves, 到最后只剩一个或2个nodes的时候(因为根据tree的定义, 从数学上可以证明最多只有两个root的height一样), 那么剩下的点就是答案.

1. Constraints

1) 题目意思已经很清楚了, 只是需要判断edge case: n = 1, n= 2 时

2. Ideas

类似于BFS的解法      T: O(n)    S: O(n)

3. Code

class Solution:
def miniHeightTree(self, n, edges):
if n <3: return [i for i in range(n)]
graph = collections.defaultdict(set)
for c1, c2 in edges:
graph[c1].add(c2)
graph[c2].add(c1)
leaves = [i for i in range(n) if len(graph[i]) == 1]
while n > 2:
n -= len(leaves)
newleaves = []
for i in leaves: #take off the outside leaves
neig = graph[i].pop() # neighbour of the leave
graph[neig].remove(i) #remove the edge from leave to neighbor
if len(graph[neig]) == 1:
newleaves.append(neig)
leaves = newleaves
return leaves

[LeetCode] 310. Minimum Height Trees_Medium tag: BFS的更多相关文章

  1. [LeetCode] 310. Minimum Height Trees 解题思路

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  2. [LeetCode] 310. Minimum Height Trees 最小高度树

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  3. leetcode@ [310] Minimum Height Trees

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  4. 【LeetCode】310. Minimum Height Trees 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 BFS 相似题目 参考资料 日期 题目地址:http ...

  5. 310. Minimum Height Trees -- 找出无向图中以哪些节点为根,树的深度最小

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  6. 310. Minimum Height Trees

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  7. [LeetCode] 64. Minimum Path Sum_Medium tag: Dynamic Programming

    Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...

  8. [LeetCode] 127. Word Ladder _Medium tag: BFS

    Given two words (beginWord and endWord), and a dictionary's word list, find the length of shortest t ...

  9. [LeetCode] 301. Remove Invalid Parentheses_Hard tag:BFS

    Remove the minimum number of invalid parentheses in order to make the input string valid. Return all ...

随机推荐

  1. Ubuntu16.04安装Mono、MonoDevelop运行C#代码

    Ubuntu16.04安装MonoDevelop运行C#代码 在Ubuntu上安装Mono 运行下面代码授权注册repo源并更新软件列表: Add the Mono repository to you ...

  2. Ubuntu 最好用的CHM阅读器KchmViewer

    直接在“ubuntu软件中心”进行搜索安装 为什么说它是最好用?很简单!可同时显示目录和内容,中文没乱码!能实现这两点的竞争对手已经不多了,至少我是没发现.什么chmsee,gnochm,都有乱码.虽 ...

  3. EXPLAIN 具体含义 ( type possible_key key key_len ref )

  4. CF 1073C Vasya and Robot(二分答案)

    C. Vasya and Robot time limit per test 1 second memory limit per test 256 megabytes input standard i ...

  5. 关于servlet3.0中的异步servlet

    刚看了一下维基百科上的介绍,servlet3.0是2009年随着JavaEE6.0发布的: 到现在已经有六七年的时间了,在我第一次接触java的时候(2011年),servlet3.0就已经出现很久了 ...

  6. 完美解决Android SDK Manager无法更新

    由于国内的各种屏蔽现在Android SDK Manager出现无法更新或更新太慢,如下方法可完美解决此问题 1. 打开..\Android\sdk\SDK Manager.exe  2.

  7. js的mime类型有哪些?

    js中的mime类型 常见类型 扩展名 类型/子类型 txt text/plain doc application/msword exe application/octet-stream pdf ap ...

  8. Git - 使用BitBucket和SourceTree进行源代码管理遇到POST git-receive-pack (chunked)

    我使用的是SourceTree Mac版,提交到BitBucket时出现 一直处于 POST git-receive-pack (chunked)  状态,经过百度,解决问题 在使用SourceTre ...

  9. MYSQL中GROUP BY不包含所有的非聚合字段时的注意事项

    本文导读:在MYSQL中使用GROUP BY分组时,我们可以select 多个非聚合字段,但是这些字段不在GROUP BY中,这样的SQL查询在SQL SERVER.ORACLE中是不合理的,且会报错 ...

  10. [ZT] matlab中plot画图参数的设置

    一.Matlab绘图中用到的直线属性包括: (1)LineStyle:线形 (2)LineWidth:线宽 (3)Color:颜色 (4)MarkerType:标记点的形状 (5)MarkerSize ...