Atcoder Regular Contest 060 F题第一问答案证明
一切的开始
令 \(x\) 为字符串,\(p\) 为正整数。如果对于满足 \(0\le i<|x|−p\) 的任何整数 \(i\) 满足 \(x[i]=x[i+p]\),则 \(p\) 称为 \(x\) 的周期。\(x\) 的最小周期表示为 \(per(x)\)。例如,\(per(abcabcabcab)=3\)。
令 \(N\) 为输入字符串 \(w\) 的长度。 情况划分如下:
(a)如果 \(w\) 是一个好的字符串(例如 \(w=ababa\))
(b)当 \(per(w)=1\) 时(例如 \(w=aaaaa\))
(c)其他情况(例如 \(w = abcabcabc\))
在(a)的情况下,最佳表达明显为 \(1\),最佳表达的为 \(1\)。
在(b)的情况下,最佳表达为 \(N\),最佳表达的为 \(1\)。
在情况(c)中,我们可以证明最佳表达为 \(2\)(请参见下面的定理 \(5\))。
定理 2
由 \(\text{KMP}\) 或者 \(\text{Z-Algorithm}\) 可知,如果正整数 \(p,q\) 是字符串 \(x\) 的周期,且 \(p+q-\gcd(p,q)\le |x|\),则 \(gcd(p,q)\) 也是 \(x\) 的周期。
引理 3
令 \(x\) 为非空字符串,以下两个是等效的。
(i) \(x\) 不是好的字符串
(ii) \(|x|/per(x)\) 为 \(2\) 或更大的整数。
首先,如果 (ii) 成立,那么 (i) 肯定成立,所以在下文中 (i) 就是 (ii) 。
如果 \(x\) 不是一个好的字符串,\(|x|/per(x)\ge 2\) 从定义来说显而易见。接下来我们只需要证明 \(|x|/per(x)\) 是一个整数,\(x\) 不是一个好的字符串意味着存在一个字符串 \(y\) 和一个整数 \(k\ge 2\),使得 \(x\) 是 \(y\) 重复 \(k\) 次后获得的字符串。令 \(p=per(x),q=|y|\),则 \(p\le q=|x|/k\le |x|/2\),由于 \(p,q\) 都是 \(x\) 的周期,且满足 \(p+q-\gcd(p,q)\le |x|\),由定理 \(2\) 知,\(\gcd(p,q)\) 是 \(x\) 的周期,假设 \(|x|/per(x)\) 不是整数,则 \(q\) 不是 \(p\) 的倍数,此时 \(\gcd(p,q)<p\),这与 \(p=per(x)\) 是 \(x\) 的最小周期相悖,因此 \(|x|/per(x)\) 是一个整数。
引理 4
令 \(x\) 为长度为 \(2\) 或更大的字符串。令 \(m=|x|\)。此外,令 \(y=x [1...m − 1]\)。如果 \(x\) 不是一个好的字符串,并且 \(per(x)\not=1\),则 \(y\) 是一个好的字符串。
假设 \(y\) 不是一个好的字符串。令 \(p=per(x),q=per(y)\)。根据引理 \(3\) 和之前的假设,\(p\) 是 \(m\) 的约数,\(q\) 是 \(|y|=m-1\) 的约数。因为 \(m\) 与 \(m-1\) 互质,因此 \(p\) 与 \(q\) 也互质,即 \(\gcd(p,q)=1\),此外,\(p\le m/2,q\le(m-1)/2\),其中 \(p\) 也是 \(y\) 的周期,因此,根据定理 \(2\),\(\gcd(p,q)=1\) 是 \(y\) 的周期,因此从 \(x[0]=x[p]\) 开始,\(x\) 的最后 \(m-1\) 个字符全部变为与 \(x[0]\) 相同的字符,此时 \(per(x)=1\),这与前提矛盾,故 \(y\) 是一个好的字符串。
定理 5
对于一个字符串 \(w\),假设 \(w\) 不是一个好的字符串,并且 \(per(w)\not=1\)。 此时,\(w\)的最佳表达为 \(2\)。
长度为 \(1\) 的字符串显然是一个好的字符串。 此外,根据引理 \(4\),\(w[1...|w|−1]\) 是一个好的字符串,因此序列\((w [0],w[1...|w|-1])\) 是 \(w\) 是最佳表达之一。 显然,\(w\) 没有1或更小的最佳表达。则 \(w\) 的最佳表达为2。
Atcoder Regular Contest 060 F题第一问答案证明的更多相关文章
- AtCoder Regular Contest 069 F Flags 二分,2-sat,线段树优化建图
AtCoder Regular Contest 069 F Flags 二分,2-sat,线段树优化建图 链接 AtCoder 大意 在数轴上放上n个点,点i可能的位置有\(x_i\)或者\(y_i\ ...
- AtCoder Beginner Contest 215 F题题解
F - Dist Max 2 什么时候我才能突破\(F\)题的大关... 算了,不说了,看题. 简化题意:给定\(n\)个点的坐标,定义没两个点的距离为\(min(|x_i-x_j|,|y_i-y_j ...
- AtCoder Regular Contest 074 F - Lotus Leaves
题目传送门:https://arc074.contest.atcoder.jp/tasks/arc074_d 题目大意: 给定一个\(H×W\)的网格图,o是可以踩踏的点,.是不可踩踏的点. 现有一人 ...
- AtCoder Regular Contest 081 F - Flip and Rectangles
题目传送门:https://arc081.contest.atcoder.jp/tasks/arc081_d 题目大意: 给定一个\(n×m\)的棋盘,棋盘上有一些黑点和白点,每次你可以选择一行或一列 ...
- [Atcoder Regular Contest 060] Tutorial
Link: ARC060 传送门 C: 由于难以维护和更新平均数的值: $Average->Sum/Num$ 这样我们只要用$dp[i][j][sum]$维护前$i$个数中取$j$个,且和为$s ...
- 【AtCoder Regular Contest 082 F】Sandglass
[链接]点击打开链接 [题意] 你有一个沙漏. 沙漏里面总共有X单位的沙子. 沙漏分A,B上下两个部分. 沙漏从上半部分漏沙子到下半部分. 每个时间单位漏1单位的沙子. 一开始A部分在上面.然后在r1 ...
- 【arc077f】AtCoder Regular Contest 077 F - SS
题意 给你一个形如"SS"的串S,以及一个函数\(f(x)\),\(x\)是一个形如"SS"的字符串,\(f(x)\)也是一个形如"SS"的 ...
- AtCoder Beginner Contest 213 F题 题解
F - Common Prefixes 该题也是囤了好久的题目了,看题目公共前缀,再扫一眼题目,嗯求每个后缀与其他后缀的公共前缀的和,那不就是后缀数组吗?对于这类问题后缀数组可是相当在行的. 我们用后 ...
- AtCoder Regular Contest 076 F - Exhausted?
题意: n个人抢m个凳子,第i个人做的位置必须小于li或大于ri,问最少几个人坐不上. 这是一个二分图最大匹配的问题,hall定理可以用来求二分图最大匹配. 关于hall定理及证明,栋爷博客里有:ht ...
随机推荐
- 【WEB基础】HTML & CSS 基础入门(2)选取工具:VS2019安装使用
前面 子曰“工欲善其事,必先利其器”.开始编写HTML代码前,我们该选择一款编辑工具,实际上,HTML作为标记语言,我们甚至可以直接用记事本来编写HTML代码,但记事本实在弱爆了.这里推荐使用Visu ...
- js函数(续)
一.全局变量和局部变量全局变量:当前js页面中均可使用的变量[声明在函数外面的变量],整个js页面中均可以使用.局部变量:声明在函数内部的变量,只能在函数内部使用.eg: var a = 1; con ...
- jquery datatable如何动态分页
展开全部 一.分页 分页的基本思想是根据datatable的页码及每页显示的行数,将数据从数据库分段提出,然后再填充到表格中,以达到分页的效果. 这里需要用到datatable插件的几个属性: &qu ...
- day 03作业
目录 作业 简述执行Python程序的两种方式以及他们的优缺点: 简述Python垃圾回收机制: 对于下述代码: 10的引用计数为多少? x对应的变量值257的引用计数为多少? 简述Python小整数 ...
- thymeleaf教程-springboot项目中实现thymeleaf自定义标签
转载: http://www.9191boke.com/466119140.html 91博客网 开始: 在使用thymeleaf的过程中有时候需要公共部分渲染页面,这个时候使用自定义标签实现自 ...
- sklearn.feature_extraction.text 的TfidfVectorizer函数
TfidfVectorizer函数主要用于,将文档(句子)等通过 tf-idf值来进行表示,也就是用一个tf-idf值的矩阵来表示文档(句子也可). from sklearn.feature_extr ...
- curl请求https资源的时候出现400
在nginx上配置了一个新的域名, 习惯性地用curl请求看看有没有配置错误 因为是https的, 所以 $curl 'https://test.test.com/' -x 127.0.0.1:443 ...
- Python入门篇-数据结构树(tree)篇
Python入门篇-数据结构树(tree)篇 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.树概述 1>.树的概念 非线性结构,每个元素可以有多个前躯和后继 树是n(n& ...
- HTML&CSS基础-外部样式表
HTML&CSS基础-外部样式表 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.如下图所示,有2个文件 p { color:pink; font-size:40px; ...
- kafka安装测试报错 could not be established. Broker may not be available.
修改 config 下配置文件 vim server.properties 配置本机ip listeners=PLAINTEXT://192.168.174.128:9092 执行命令时 bin/ka ...