Grundy值

当前状态的Grundy值就是除任意一步所能转移到的状态的Grundy值以外的最小非负整数,

以硬币问题一为例,可写成:

int init_grundy()
{
sg[] = ;
for(int i = ;i <= x;i++) //递推求前x个SG值
{
set<int>st;
for(int j = ;j < k;j++)
if(a[j] <= i) st.insert(sg[i - a[j]]); int g = ;
while(st.count(g)) g++;
sg[i] = g;
}
}

Grundy值有什么用呢?

它的作用是巨大的,利用它,不光可以解决这个问题,其它许多问题都可以转换成前面介绍的Nim问题,即问题的解等于子问题的异或和。

Nim问题为什么等于异或和之前口胡过,这些问题为什么等于子问题的Grundy值的异或和呢?

根据Grundy的定义,先看下Grundy的性质(与Nim对比):

  • Nim中有x颗石子的石子堆,能够转移成0, 1, 2, ..., x-1可石子的石子堆
  • 从Grundy值为x的状态出发,也能转移到Grundy值为0, 1, 2, ,,,,, x-1的状态

也就不难理解为什么是异或和了:当必败态为Grundy异或和为0是,能保证必败态只能变成必胜态;必胜态可以转成必败态。

为了保证Grundy值为x的状态能转移为小于x的状态,Grundy的定义设为不在子问题Grundy值中的最小值(也就是说小于x的Grundy值都存在于子问题中)//好像有点循环论证,,,醒醒,这也能叫证明,,,个人理解吧

也不难发现,Nim问是Grundy问题的特例,其单堆的Grundy值为x。

例题

1、硬币游戏2

就是个堆Grundy值得异或和,异或和为0先手必败,否则先手必胜。

2、Cutting Game

题目:有一张 $w \times h$ 个格子的长方形纸,两个人轮流切割,水平或者垂直的切成两部分,最小切出单个格子($1 \times 1$)的一方获胜。当双方都采取最佳策略时,谁会获胜?

分析:

这样会发生分割的游戏,也能够计算Grundy值。(为啥啊??)

当一张 $w \times h$ 的纸张分割成两张时,假设所得的纸张的Grundy值分别为 $g_1$ 和 $g_2$,则这两张纸对应的状态的Geundy值为 $g_1 \ XOR \ g_2$。

另外,易知,一旦切割出长或宽为1时,下一步就一定能够切出 $1 \times 1$的纸张,所以知道此时必败。因此切割纸张时总要保证长和宽至少为2.

不然,grundy(2,2) 时 st{ grundy(1,2)^grundy(1,2), grundy(2,1)^grundy(2,1) },则sg[2]=1先手必胜;而实际上先手必败。

(为什么硬币问题不要考虑转译成必败态,不懂,哪个大佬能教教我)

#include<cstdio>
#include<set>
#include<cstring>
using namespace std; const int maxw = +;
const int maxh = +;
int sg[maxw][maxh]; int grundy(int w, int h)
{
//printf("%d %d\n", w, h);
int& ret = sg[w][h];
if(ret != -) return ret;
if(w== || h==) return ret=; set<int>st;
for(int i = ;i < w-;i++) st.insert(grundy(i, h) ^ grundy(w-i, h));
for(int i = ;i < h-;i++) st.insert(grundy(w, i) ^ grundy(w, h-i));
ret = ;
while(st.count(ret)) ret++;
return ret;
} int w, h; int main()
{
memset(sg, -, sizeof(sg));
while(scanf("%d%d", &w, &h) == )
{
if(grundy(w, h)==) printf("LOSE\n");
else printf("WIN\n");
}
return ;
}

硬币游戏2&&Cutting Game——Grundy值的更多相关文章

  1. 4.1.6 Grundy数-硬币游戏2

    Problem Description: Alice 和 Bob 在玩一个游戏.给定 k 个数字 a1,a2,……,ak.一开始,有n堆硬币,每堆各有 Xi 枚硬币.Alice 和 Bob 轮流选出一 ...

  2. 博弈论:寻找先手必胜策略——Grundy值

    选修了人工智能课程,老师布置了调研任务:Grundy,开始看了一些资料并没有看懂. 后来找到了一篇文,写的很棒,里面有好多博弈相关的问题与分析,分享出来给大家: http://endless.logd ...

  3. 1289 大鱼吃小鱼 1305 Pairwise Sum and Divide 1344 走格子 1347 旋转字符串 1381 硬币游戏

    1289 大鱼吃小鱼 有N条鱼每条鱼的位置及大小均不同,他们沿着X轴游动,有的向左,有的向右.游动的速度是一样的,两条鱼相遇大鱼会吃掉小鱼.从左到右给出每条鱼的大小和游动的方向(0表示向左,1表示向右 ...

  4. BZOJ 1411&&Vijos 1544 : [ZJOI2009]硬币游戏【递推,快速幂】

    1411: [ZJOI2009]硬币游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 897  Solved: 394[Submit][Status ...

  5. bzoj1411: [ZJOI2009]硬币游戏

    1411: [ZJOI2009]硬币游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 965  Solved: 420[Submit][Status ...

  6. HDU 3537 Mock Turtles型翻硬币游戏

    题目大意: 每次可以翻1个或者2个或者3个硬币,但要保证最右边的那个硬币是正面的,直到不能操作为输,这题目还有说因为主人公感情混乱可能描述不清会有重复的硬币说出,所以要去重 这是一个Mock Turt ...

  7. 51nod1381 硬币游戏

    1381 硬币游戏 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题  收藏  关注 有一个简单但是很有趣的游戏.在这个游戏中有一个硬币还有一张桌子,这张桌子上有很多平 ...

  8. TYVJ P1075 硬币游戏 Label:dp

    背景 农民John的牛喜欢玩硬币,所以John就为它们发明了一个新的两人硬币游戏,叫做Xoinc. 描述 最初地面上有一堆n个硬币(5<=n<=2000),从上面数第i个硬币的价值为C_i ...

  9. tyvj P1075 - 硬币游戏 博弈DP

    P1075 - 硬币游戏 From price    Normal (OI)总时限:10s    内存限制:128MB    代码长度限制:64KB 背景 Background 农民John的牛喜欢玩 ...

随机推荐

  1. Matlab匿名函数

    Matlab可以通过function去定义一些功能函数,这使得代码变得简洁和高效.但是如果遇到的是一些简单的数学公式组成的函数表达式,继续用function去定义函数,似乎显得有些冗杂和多余.这时候, ...

  2. [转帖]华为PC端台式机电脑来啦!自研主板及自研CPU处理器

    华为PC端台式机电脑来啦!自研主板及自研CPU处理器 在性能上,4核版相当于酷睿i5 ,8核版相当于酷睿i5 8300H. https://www.bilibili.com/read/cv376376 ...

  3. 59 网络编程(一)——端口与InetSocketAddress

    端口与几个CMD命令 公认端口:0-1023 比如80端口分配给www,21端口分配给FTP等 注册端口:2014-49151  分配给用户进程或引用程序 动态/私有端口:49151-65535 需要 ...

  4. K-Means 聚类分析学习笔记

    在之前分享的链家二手房数据分析的练习中用到了 K-Means 聚类分析方法,所以就顺道一起复习一下 K-Means 的基础知识好了. K-Means 聚类分析可将样本分为若干个集群,它的核心思想就是使 ...

  5. NVDLA软件架构和源码解析 第一章—内核驱动【华为云技术分享】

    驱动整体设计介绍 不同的processor Nvidia DLA的内核驱动KMD(Kernel mode driver)中,并不是把DLA当成一个设备来控制,而是把不同的功能模块当做不同的proces ...

  6. java中各种常见的异常

    一.各种常见的异常 在上一节中程序如果你注意留意,程序抛出的异常是:java.lang.ArithmeticException.这个异常是在lang包中已经定义的.在lang包中还定义了一些我们非常常 ...

  7. java基础 接口静态方法

    /** * 从java8开始,接口当中允许定义静态方法 * 格式: * public static 返回值类型 方法名称(参数列表){ * 方法体 * } * 提示:就是将abstract或者defa ...

  8. Linux图形界面从登录列表中隐藏用户和开机自动登录

    从GDM-GNOME显示管理器:“ GNOME显示管理器(GDM)是一个管理图形显示服务器并处理图形用户登录的程序.” 显示管理器为X Window System和Wayland用户提供图形登录提示. ...

  9. Python与Golang对比

    一:前言 刚看了一篇软文,说什么“才华是改变人生最有效的途径”,反正呢,大体就是科技进步,要想一直在车上,就得不断的学习,刚好最近也准备学习Golang,最近火的不能在火了吧,刚好也有些Python基 ...

  10. 2019 思贝克java面试笔试题 (含面试题解析)

      本人5年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条.思贝克等公司offer,岗位是Java后端开发,因为发展原因最终选择去了思贝克,入职一年时间了,也成为了面试官 ...