Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks

2019-06-01 09:52:46

Paperhttp://openaccess.thecvf.com/content_cvpr_2018/papers/Gupta_Social_GAN_Socially_CVPR_2018_paper.pdf

Codehttps://github.com/agrimgupta92/sgan

1. 背景与动机:

本文尝试用 RNN based GAN 来进行行人轨迹的预测,如上图所示。前人的工作主要存在如下的两个缺点:

1). 他们仅建模了近邻的行人,所以,他们无法高校的建模一个场景中所有人的交互。

2). 他们用常见的损失函数来最小化 GT 和 预测的结果之间的欧氏距离,来尝试去学习 “average behavior”。

本文的目标是学习多个 “Good Behaviors”,即,多个社交上可接受的轨迹。

2. 算法设计

如下图所示,本文尝试用 GAN 的方法来建模该问题。

给定初始的轨迹,作者用 LSTM 来进行编码,然后得到向量化的表达,并且用 Pooling module 来进行信息的交互,然后将交互后的信息,输入到解码器(另一个 LSTM 模型)。至此,GAN 中的 generator 部分算是完成了,我们就得到了预测的轨迹结果。然后我们将该轨迹,输入到判别器中(即,之前的 encoder),进行是真是假的判断。

3. 主要创新点:

整个流程下来,作者总结其创新点为:Pool module 以及 多样化的样本生成

3.1 关于 Pooling module

为了联合的进行多个行人的推理,我们需要一种机制来在多个 LSTM 模型进行信息共享。Social Pooling 通过 grid based pooling 机制来解决该问题。然而,这种方法速度很慢,并且无法捕获全局内容。

如图 2 所示,这可以通过将输入的坐标传送到多层感知机,然后一个 symmetric function(作者用的是 Max-Pooling)来解决。

3.2 估计多样性的样本生成

4. Experiment:

Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks的更多相关文章

  1. 文献阅读报告 - Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks

    paper:Gupta A , Johnson J , Fei-Fei L , et al. Social GAN: Socially Acceptable Trajectories with Gen ...

  2. 生成对抗网络(Generative Adversarial Networks,GAN)初探

    1. 从纳什均衡(Nash equilibrium)说起 我们先来看看纳什均衡的经济学定义: 所谓纳什均衡,指的是参与人的这样一种策略组合,在该策略组合上,任何参与人单独改变策略都不会得到好处.换句话 ...

  3. Generative Adversarial Networks,gan论文的畅想

    前天看完Generative Adversarial Networks的论文,不知道有什么用处,总想着机器生成的数据会有机器的局限性,所以百度看了一些别人 的看法和观点,可能我是机器学习小白吧,看完之 ...

  4. 生成对抗网络(Generative Adversarial Networks, GAN)

      生成对抗网络(Generative Adversarial Networks, GAN)是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的学习方法之一.   GAN 主要包括了两个部分,即 ...

  5. 论文解读(GAN)《Generative Adversarial Networks》

    Paper Information Title:<Generative Adversarial Networks>Authors:Ian J. Goodfellow, Jean Pouge ...

  6. StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 论文笔记

    StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks  本文将利 ...

  7. 论文笔记之:Semi-Supervised Learning with Generative Adversarial Networks

    Semi-Supervised Learning with Generative Adversarial Networks 引言:本文将产生式对抗网络(GAN)拓展到半监督学习,通过强制判别器来输出类 ...

  8. Paper Reading: Perceptual Generative Adversarial Networks for Small Object Detection

    Perceptual Generative Adversarial Networks for Small Object Detection 2017-07-11  19:47:46   CVPR 20 ...

  9. (转)Introductory guide to Generative Adversarial Networks (GANs) and their promise!

    Introductory guide to Generative Adversarial Networks (GANs) and their promise! Introduction Neural ...

随机推荐

  1. static关键字的作用(修饰类、方法、变量、静态块)

    1. static修饰的类只能为内部类,普通类无法用static关键字修饰.static修饰的内部类相当于一个普通的类,访问方式为(new 外部类名.内部类的方法() ).如下所示: public c ...

  2. mysql启动过程

    MYSQL启动过程经过以下顺序 1.mysql读取配置文件的顺序 读取顺序 /etc/my.cnf>/etc/mysql/my.cnf>/usr/etc/my.cnf ~/.my.cnf ...

  3. UEditor 在 Layer 模态框中无法使用问题

    问题: 解决方法: 在 使用  ueditor 的页面顶部加入js代码: window.UEDITOR_HOME_URL = "__STATIC__/path/to/ueditor/&quo ...

  4. 04 -- 元类和ORM

    本篇主要介绍元类,为什么说一切皆对象:如何动态的创建类等:以及ORM,即什么是ORM等知识 一.元类 1.1 在Python中一切皆对象 在学习元类中我们首先需要了解一个概念-- python中一切皆 ...

  5. 如何使用Arduino和SIM900A GPRS / GSM模块将数据发送到Web服务器

    今天我们在这里介绍一个非常有趣的项目,我们将使用Arduino开发板和GPRS将数据发送到SparkFun服务器.这是一个基于IoT的项目,我们将使用GSM模块SIM900A将一些数据发送到互联网上的 ...

  6. 《CoderXiaoban》第八次团队作业:Alpha冲刺5

    项目 内容 这个作业属于哪个课程 任课教师博客主页链接 这个作业的要求在哪里 实验十二 团队作业8:软件测试与ALPHA冲刺 团队名称 Coderxiaoban团队 作业学习目标 (1)掌握软件测试基 ...

  7. win 10 VMware与Hyper-v共存

    管理员身份运行命令提示符 cmd bcdedit /copy {current} /d "Windows10 no Hyper-V bcdedit /set {XXXXXXXX-XXXX-X ...

  8. python爬虫——数据爬取和具体解析

    关于正则表达式的更多用法,可参考链接:https://blog.csdn.net/weixin_40040404/article/details/81027081 一.正则表达式: 1.常用正则匹配: ...

  9. 【二分答案】Expanding Rods POJ 1905

    题目链接:http://poj.org/problem?id=1905 题目大意:原长度为L的线段因受热膨胀为一段弧,线段L.弧长L'.温度n.膨胀率c满足L' =(1+n/c)*L;求线段的中点移动 ...

  10. php自定义函数之静态变量

    如果我想知道函数被调用了多少次怎么办?在没有学习静态变量的时候,我们没有好的办法来解决. 静态变量的特点是:声明一个静态变量,第二次调用函数的时候,静态变量不会再初始化变量,会在原值的基础上读取执行. ...