Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks

2019-06-01 09:52:46

Paperhttp://openaccess.thecvf.com/content_cvpr_2018/papers/Gupta_Social_GAN_Socially_CVPR_2018_paper.pdf

Codehttps://github.com/agrimgupta92/sgan

1. 背景与动机:

本文尝试用 RNN based GAN 来进行行人轨迹的预测,如上图所示。前人的工作主要存在如下的两个缺点:

1). 他们仅建模了近邻的行人,所以,他们无法高校的建模一个场景中所有人的交互。

2). 他们用常见的损失函数来最小化 GT 和 预测的结果之间的欧氏距离,来尝试去学习 “average behavior”。

本文的目标是学习多个 “Good Behaviors”,即,多个社交上可接受的轨迹。

2. 算法设计

如下图所示,本文尝试用 GAN 的方法来建模该问题。

给定初始的轨迹,作者用 LSTM 来进行编码,然后得到向量化的表达,并且用 Pooling module 来进行信息的交互,然后将交互后的信息,输入到解码器(另一个 LSTM 模型)。至此,GAN 中的 generator 部分算是完成了,我们就得到了预测的轨迹结果。然后我们将该轨迹,输入到判别器中(即,之前的 encoder),进行是真是假的判断。

3. 主要创新点:

整个流程下来,作者总结其创新点为:Pool module 以及 多样化的样本生成

3.1 关于 Pooling module

为了联合的进行多个行人的推理,我们需要一种机制来在多个 LSTM 模型进行信息共享。Social Pooling 通过 grid based pooling 机制来解决该问题。然而,这种方法速度很慢,并且无法捕获全局内容。

如图 2 所示,这可以通过将输入的坐标传送到多层感知机,然后一个 symmetric function(作者用的是 Max-Pooling)来解决。

3.2 估计多样性的样本生成

4. Experiment:

Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks的更多相关文章

  1. 文献阅读报告 - Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks

    paper:Gupta A , Johnson J , Fei-Fei L , et al. Social GAN: Socially Acceptable Trajectories with Gen ...

  2. 生成对抗网络(Generative Adversarial Networks,GAN)初探

    1. 从纳什均衡(Nash equilibrium)说起 我们先来看看纳什均衡的经济学定义: 所谓纳什均衡,指的是参与人的这样一种策略组合,在该策略组合上,任何参与人单独改变策略都不会得到好处.换句话 ...

  3. Generative Adversarial Networks,gan论文的畅想

    前天看完Generative Adversarial Networks的论文,不知道有什么用处,总想着机器生成的数据会有机器的局限性,所以百度看了一些别人 的看法和观点,可能我是机器学习小白吧,看完之 ...

  4. 生成对抗网络(Generative Adversarial Networks, GAN)

      生成对抗网络(Generative Adversarial Networks, GAN)是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的学习方法之一.   GAN 主要包括了两个部分,即 ...

  5. 论文解读(GAN)《Generative Adversarial Networks》

    Paper Information Title:<Generative Adversarial Networks>Authors:Ian J. Goodfellow, Jean Pouge ...

  6. StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 论文笔记

    StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks  本文将利 ...

  7. 论文笔记之:Semi-Supervised Learning with Generative Adversarial Networks

    Semi-Supervised Learning with Generative Adversarial Networks 引言:本文将产生式对抗网络(GAN)拓展到半监督学习,通过强制判别器来输出类 ...

  8. Paper Reading: Perceptual Generative Adversarial Networks for Small Object Detection

    Perceptual Generative Adversarial Networks for Small Object Detection 2017-07-11  19:47:46   CVPR 20 ...

  9. (转)Introductory guide to Generative Adversarial Networks (GANs) and their promise!

    Introductory guide to Generative Adversarial Networks (GANs) and their promise! Introduction Neural ...

随机推荐

  1. 1、uiautomator2常用语法

    uiautomator2常用语法 连接设备 使用USB连接: d=u2.connect_USB('148b4090')输入手机序列号 d是给当前连接设备定位一个变量 获取设备的信息: print(d. ...

  2. python之变量的数据类型(3)dict 及解构简单介绍

    一.变量的数据类型(3) 1. dict 字典dict 用{}来表示 键值对数据 {key:value} 唯一性 键 都必须是可哈希的 不可变的数据类型就可以当做字典中的键 值 没有任何限制 2.增删 ...

  3. 【转】DATA_SECTION 和CODE_SECTION 的区别

    请问#pragma DATA_ALIGN有什么作用? 下面是我在EDMA的一个例程中摘录的几句话:#pragma DATA_ALIGN(ping,128);#pragma DATA_ALIGN(pon ...

  4. request-html 简单爬虫

    import asyncio from requests_html import HTMLSession url = 'http://www.xiaohuar.com/hua/' session = ...

  5. 微信小程序(小游戏)后台开发

    小程序开放接口功能,目的是方便小程序接入第三方服务器,比如,商城类小程序,小游戏,需要保存订单数据,玩家信息等.那就需要服务器和数据库, 开发者对于各方关系必须要理清,那就是小程序,用户,开发者服务器 ...

  6. 191011 python3-format函数

    # 题目:一球从100米高度自由落下,每次落地后反跳回原高度的一半:# 再落下,求它在第10次落地时,共经过多少米?第10次反弹多高?方法一: l = 100.0 s = 100 for i in r ...

  7. oracle添加序列

    原文地址 http://blog.itpub.net/24099965/viewspace-1116923/ 1.创建.删除 create sequence seq_newsId increment ...

  8. Java精通并发-锁粗化与锁消除技术实例演示与分析

    在上一次https://www.cnblogs.com/webor2006/p/11446473.html中对锁的升级进行了一个比较详细的理论化的学习,先回忆一下: 编译器对于锁的优化措施: 锁消除技 ...

  9. JDK源码那些事儿之LinkedBlockingDeque

    阻塞队列中目前还剩下一个比较特殊的队列实现,相比较前面讲解过的队列,本文中要讲的LinkedBlockingDeque比较容易理解了,但是与之前讲解过的阻塞队列又有些不同,从命名上你应该能看出一些端倪 ...

  10. Java四种读取和创建XML文档的例子教程

    四种方法解析XML文档:Dom.SAX.JDOM.dom4j          1.了解XML XML,即可扩展标记语言(Extensible Markup Language),标准通用标记语言的子集 ...