PCA的概念:

主要思想是将n维特征映射到k维上,这k维是全新的正交特征,这k维特征被称为主成分,在原数据的基础上重新构造出来k维。就是从原始的空间顺序的找出一组相互正交的坐标轴,新坐标轴的选择和数据本身有很大的关系。其中,第一个坐标轴是从原数据中方差最大的方向,第二个新坐标轴选择是与第一个坐标轴正交平面中使得方差最大的,第三个轴是与第一二轴正交的平面中方差最大的,依次类推。依次类推,可以得到n个这样的坐标轴。通过这种方式获得的新的坐标轴,我们发现,大部分方差都包含在前面k个坐标轴中,后面的坐标轴所含的方差几乎为0。于是,我们可以忽略余下的坐标轴,只保留前面k个含有绝大部分方差的坐标轴。事实上,这相当于只保留包含绝大部分方差的维度特征,而忽略包含方差几乎为0的特征维度,实现对数据特征的降维处理。

PCA算法:

优点:降低数据的复杂性,识别最重要的多个特征

缺点:不一定需要,可能损失有用信息

适用数据类型:数值型数据

数据集下载链接:http://archive.ics.uci.edu/ml/machine-learning-databases/

在PCA中应用的数据集:http://archive.ics.uci.edu/ml/machine-learning-databases/secom/

(1)打开数据集计算特征数目:(列为特征数)在secom数据集中一行代表一条数据,将nan值改为非nan值的平均值

(2)去除特征值

(3)计算协方差矩阵,对该矩阵进行特征值分析。

将数据转换成n个主成分的伪码:

(1)去除平均值

(2)计算协方差矩阵

(3)计算协方差矩阵的特征值和特征向量

(4)将特征值从大到小排序

(5)保留最上面的n个特征向量

(6)将数据转换到上述n个特征向量构建的新空间中

note:

参考:https://zhuanlan.zhihu.com/p/37777074

样本均值:

样本方差:

样本x和样本y的协方差:

样本均值,方差和协方差的区别:

样本均值:不同样本根据同一维求平均

方差是根据数据的同一维,针对n个样本计算得到的,

协方差:数据至少两维,表示样本(好多维)与样本之间的关系,协方差为正:样本x和样本y是正向关系,为负,是负向关系,等于0,说明x和y独立。

eg:对于3维数据(x,y,z),协方差为:

PCA:主成分分析的更多相关文章

  1. 用PCA(主成分分析法)进行信号滤波

    用PCA(主成分分析法)进行信号滤波 此文章从我之前的C博客上导入,代码什么的可以参考matlab官方帮助文档 现在网上大多是通过PCA对数据进行降维,其实PCA还有一个用处就是可以进行信号滤波.网上 ...

  2. 机器学习之PCA主成分分析

    前言            以下内容是个人学习之后的感悟,转载请注明出处~ 简介 在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性.人们自然希望变量个数较少而得到的 信息较多.在很 ...

  3. PCA主成分分析Python实现

    作者:拾毅者 出处:http://blog.csdn.net/Dream_angel_Z/article/details/50760130 Github源代码:https://github.com/c ...

  4. 机器学习 - 算法 - PCA 主成分分析

    PCA 主成分分析 原理概述 用途 - 降维中最常用的手段 目标 - 提取最有价值的信息( 基于方差 ) 问题 - 降维后的数据的意义 ? 所需数学基础概念 向量的表示 基变换 协方差矩阵 协方差 优 ...

  5. PCA(主成分分析)方法浅析

    PCA(主成分分析)方法浅析 降维.数据压缩 找到数据中最重要的方向:方差最大的方向,也就是样本间差距最显著的方向 在与第一个正交的超平面上找最合适的第二个方向 PCA算法流程 上图第一步描述不正确, ...

  6. PCA主成分分析(上)

    PCA主成分分析 PCA目的 最大可分性(最大投影方差) 投影 优化目标 关键点 推导 为什么要找最大特征值对应的特征向量呢? 之前看3DMM的论文的看到其用了PCA的方法,一开始以为自己对于PCA已 ...

  7. PCA主成分分析方法

    PCA: Principal Components Analysis,主成分分析. 1.引入 在对任何训练集进行分类和回归处理之前,我们首先都需要提取原始数据的特征,然后将提取出的特征数据输入到相应的 ...

  8. 【建模应用】PCA主成分分析原理详解

    原文载于此:http://blog.csdn.net/zhongkelee/article/details/44064401 一.PCA简介 1. 相关背景 上完陈恩红老师的<机器学习与知识发现 ...

  9. PCA主成分分析+白化

    参考链接:http://deeplearning.stanford.edu/wiki/index.php/%E4%B8%BB%E6%88%90%E5%88%86%E5%88%86%E6%9E%90 h ...

  10. CS229 6.6 Neurons Networks PCA主成分分析

    主成分分析(PCA)是一种经典的降维算法,基于基变换,数据原来位于标准坐标基下,将其投影到前k个最大特征值对应的特征向量所组成的基上,使得数据在新基各个维度有最大的方差,且在新基的各个维度上数据是不相 ...

随机推荐

  1. eclipse启动tomcat警告 [SetPropertiesRule]{Server/Service/Engine/Host/Context}

    解决问题:解决办法是:关闭tomcat,双击eclipse下tomcat服务器,在出来的Tomcat server at localhost页面中找到server options选项,选中其中的选项” ...

  2. Java生鲜电商平台-高并发的设计与架构

    Java生鲜电商平台-高并发的设计与架构 说明:源码下载Java开源生鲜电商平台以及高并发的设计与架构文档 对于高并发的场景来说,比如电商类,o2o,门户,等等互联网类的项目,缓存技术是Java项目中 ...

  3. PHP 简单面向对象 验证码类(静态实例对象调用)

    没事写了一个简单的面向对象验证码类,可以直接使用(替换一下字体路径) <?php class authCode { private static $instance = null; #实例对象 ...

  4. php中mysqli_error($conn)的用法

    注意:用函数判断sql语句是否有错需要把这个函数写在mysqli_query("$conn连接语句","$sql语句")后面才能进行检测. 返回值:返回最近调用 ...

  5. redo log重做日志缓冲

    ---------------------------------- 2015-02-10---------------------------------- innodb redo log (重做日 ...

  6. jenkins如何构建C#代码写的网站

    纯粹是因为同事习惯了写C#代码,开发的网站用C#编译, 对于习惯了用Maven编译的测试人员,真是一头雾水.不用jenkins吧,效率特别低,每次收到开发发过来的版本,还要进行数据库相关配置,是非常累 ...

  7. Rust第二次综合练习

    啊,啊,啊 原来我一直用的linux rust1.1的老版本, 很多书上的写法都不行,得调试. 今天早上,换成了win rust1.3版本, 于是,可以按书上标准的语法来弄了. 一,main.rs u ...

  8. 【我的第一个现实漏洞分析】 CVE-2017-17215 华为智能路由器HG532 漏洞分析笔记

    0x00 基本信息 2017.11.27 Check Point团队报告华为 HG532 产品的远程命令执行漏洞(CVE-2017-17215),Mirai的升级版变种中已经使用该漏洞. 华为HG53 ...

  9. Python内容

    1.Python介绍.计算机硬件.网络.变量.数据类型:列表+元组+字典+布尔值+字符串+数字+集合.格式化输出.if判断.for循环.while循环. 2.三元运算.字符编码.文件处理:r/rb(读 ...

  10. Subversion简介(一)

    Subversion 就是一款实现版本控制的工具软件,通常也称为版本控制器,简称 SVN. Subversion 是 Apache 软件基金会组织下的一个项目. SVN 的工作原理:采取客户端/服务器 ...