There are n cities connected by m flights. Each fight starts from city and arrives at v with a price w.

Now given all the cities and fights, together with starting city src and the destination dst, your task is to find the cheapest price from src to dst with up to k stops. If there is no such route, output -1.

Example 1:
Input:
n = 3, edges = [[0,1,100],[1,2,100],[0,2,500]]
src = 0, dst = 2, k = 1
Output: 200
Explanation:
The graph looks like this:

The cheapest price from city 0 to city 2 with at most 1 stop costs 200, as marked red in the picture.
Example 2:
Input:
n = 3, edges = [[0,1,100],[1,2,100],[0,2,500]]
src = 0, dst = 2, k = 0
Output: 500
Explanation:
The graph looks like this:

The cheapest price from city 0 to city 2 with at most 0 stop costs 500, as marked blue in the picture.

Note:

  • The number of nodes n will be in range [1, 100], with nodes labeled from 0 to n - 1.
  • The size of flights will be in range [0, n * (n - 1) / 2].
  • The format of each flight will be (src, dst, price).
  • The price of each flight will be in the range [1, 10000].
  • k is in the range of [0, n - 1].
  • There will not be any duplicated flights or self cycles.

解法:Dijkstra's algorithm

Java:

class Solution {
public int findCheapestPrice(int n, int[][] flights, int src, int dst, int K) {
Map<Integer, Map<Integer, Integer>> prices = new HashMap<>();
for (int[] f : flights) {
if (!prices.containsKey(f[0])) prices.put(f[0], new HashMap<>());
prices.get(f[0]).put(f[1], f[2]);
}
Queue<int[]> pq = new PriorityQueue<>((a, b) -> (Integer.compare(a[0], b[0])));
pq.add(new int[] {0, src, k + 1});
while (!pq.isEmpty()) {
int[] top = pq.remove();
int price = top[0];
int city = top[1];
int stops = top[2];
if (city == dst) return price;
if (stops > 0) {
Map<Integer, Integer> adj = prices.getOrDefault(city, new HashMap<>());
for (int a : adj.keySet()) {
pq.add(new int[] {price + adj.get(a), a, stops - 1});
}
}
}
return -1;
}
} 

Python:

class Solution(object):
def findCheapestPrice(self, n, flights, src, dst, K):
"""
:type n: int
:type flights: List[List[int]]
:type src: int
:type dst: int
:type K: int
:rtype: int
"""
adj = collections.defaultdict(list)
for u, v, w in flights:
adj[u].append((v, w))
best = collections.defaultdict(lambda: collections.defaultdict(lambda: float("inf")))
min_heap = [(0, src, K+1)]
while min_heap:
result, u, k = heapq.heappop(min_heap)
if k < 0 or best[u][k] < result:
continue
if u == dst:
return result
for v, w in adj[u]:
if result+w < best[v][k-1]:
best[v][k-1] = result+w
heapq.heappush(min_heap, (result+w, v, k-1))
return -1

Python:

class Solution(object):
def findCheapestPrice(self, n, flights, src, dst, K):
"""
:type n: int
:type flights: List[List[int]]
:type src: int
:type dst: int
:type K: int
:rtype: int
"""
f = collections.defaultdict(dict)
for a, b, p in flights:
f[a][b] = p
heap = [(0, src, k + 1)]
while heap:
p, i, k = heapq.heappop(heap)
if i == dst:
return p
if k > 0:
for j in f[i]:
heapq.heappush(heap, (p + f[i][j], j, k - 1))
return -1  

C++:

// Time:  O((|E| + |V|) * log|V|) = O(|E| * log|V|)
// Space: O(|E| + |V|) = O(|E|) class Solution {
public:
int findCheapestPrice(int n, vector<vector<int>>& flights, int src, int dst, int K) {
using P = pair<int, int>;
unordered_map<int, vector<P>> adj;
for (const auto& flight : flights) {
int u, v, w;
tie(u, v, w) = make_tuple(flight[0], flight[1], flight[2]);
adj[u].emplace_back(v, w);
} unordered_map<int, unordered_map<int, int>> best;
using T = tuple<int, int, int>;
priority_queue<T, vector<T>, greater<T>> min_heap;
min_heap.emplace(0, src, K + 1);
while (!min_heap.empty()) {
int result, u, k;
tie(result, u, k) = min_heap.top(); min_heap.pop();
if (k < 0 ||
(best.count(u) && best[u].count(k) && best[u][k] < result)) {
continue;
}
if (u == dst) {
return result;
}
for (const auto& kvp : adj[u]) {
int v, w;
tie(v, w) = kvp;
if (!best.count(v) ||
!best[v].count(k - 1) ||
result + w < best[v][k - 1]) {
best[v][k - 1] = result + w;
min_heap.emplace(result + w, v, k - 1);
}
}
}
return -1;
}
};

    

All LeetCode Questions List 题目汇总

[LeetCode] 787. Cheapest Flights Within K Stops K次转机内的最便宜航班的更多相关文章

  1. LeetCode 787. Cheapest Flights Within K Stops

    原题链接在这里:https://leetcode.com/problems/cheapest-flights-within-k-stops/ 题目: There are n cities connec ...

  2. [LeetCode] 787. Cheapest Flights Within K Stops_Medium tag: Dynamic Programming, BFS, Heap

    There are n cities connected by m flights. Each fight starts from city u and arrives at v with a pri ...

  3. 【LeetCode】787. Cheapest Flights Within K Stops 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 方法一:DFS 方法二:BFS 参考资料 日期 题目 ...

  4. [LeetCode] Cheapest Flights Within K Stops K次转机内的最便宜的航班

    There are n cities connected by m flights. Each fight starts from city u and arrives at v with a pri ...

  5. 787. Cheapest Flights Within K Stops

    There are n cities connected by m flights. Each fight starts from city u and arrives at v with a pri ...

  6. [Swift]LeetCode787. K 站中转内最便宜的航班 | Cheapest Flights Within K Stops

    There are n cities connected by m flights. Each fight starts from city u and arrives at v with a pri ...

  7. Java实现 LeetCode 787 K 站中转内最便宜的航班(两种DP)

    787. K 站中转内最便宜的航班 有 n 个城市通过 m 个航班连接.每个航班都从城市 u 开始,以价格 w 抵达 v. 现在给定所有的城市和航班,以及出发城市 src 和目的地 dst,你的任务是 ...

  8. LeetCode:二叉搜索树中第K小的数【230】

    LeetCode:二叉搜索树中第K小的数[230] 题目描述 给定一个二叉搜索树,编写一个函数 kthSmallest 来查找其中第 k 个最小的元素. 说明:你可以假设 k 总是有效的,1 ≤ k ...

  9. LeetCode:乘法表中的第K小的数【668】

    LeetCode:乘法表中的第K小的数[668] 题目描述 几乎每一个人都用 乘法表.但是你能在乘法表中快速找到第k小的数字吗? 给定高度m .宽度n 的一张 m * n的乘法表,以及正整数k,你需要 ...

随机推荐

  1. zookeeper题目

    1. ZooKeeper是什么?2. ZooKeeper提供了什么?3. Zookeeper文件系统4. ZAB协议?5. 四种类型的数据节点 Znode6. Zookeeper Watcher 机制 ...

  2. test20190924 老L

    80+50+100=230.T1没做出来说明我数列学得不好? LOLO 的含树 现有函数 \[ g_m(i)=\begin{cases} 0, & 0 \leq i \leq m\\ i-1+ ...

  3. B/S大附件上传,支持断点续传

    核心原理: 该项目核心就是文件分块上传.前后端要高度配合,需要双方约定好一些数据,才能完成大文件分块,我们在项目中要重点解决的以下问题. * 如何分片: * 如何合成一个文件: * 中断了从哪个分片开 ...

  4. am335x system upgrade kernel ethernet(四)

    1      Scope of Document This document describes ethernet hardware design and porting KZS8081 to ubo ...

  5. WinDbg常用命令系列---清屏

    .cls (Clear Screen) .cls命令清除调试器命令窗口显示. .cls 环境: 模式 用户模式下,内核模式 目标 实时. 崩溃转储 平台 全部 清屏前 清屏后

  6. 了解Python-白 驹 过 隙 , 忽 然 而 已

    白 驹 过 隙 , 忽 然 而 已 人 生 苦 短,我 用 Python -- Life is short , you need Python 代码量少,同一样问题 ,用不同的语言解决时,一般情况下P ...

  7. QQ for Mac聊天纪录怎么查找??

    在你Mac上打开你的QQ,选择任意聊天窗口,打字的上面有6个图表快捷键,第6个就是查看聊天记录的功能键

  8. hexo绑定个人域名

    前段时间用 hexo 搭建的 gitpage 个人博客,服务器用的是 github 的,然后域名默认也是 github 下的二级域名:username.github.io, 现在为了提升格调准备将自己 ...

  9. 【cf补题记录】A. Hotelier

    思考之后再看题解,是与别人灵魂之间的沟通与碰撞 A. Hotelier 题意 给出长度为n的字符串,字符串由'L'.'R'以及数字0~9组成.旅馆有10间房子,L代表客人从左边入住,R代表客人从右边入 ...

  10. 【转】Android ROM分析(1):刷机原理及方法

    一.刷机原理 android系统启动的时候,首先会进行一些诸如硬件自检之类的操作,这些操作完成以后(至少它应该知道当前的机器有没有电),会检查一下当前手机按键的状态(接下来就是所谓刷机模式切换了,不同 ...