On a `N * N` grid, we place some `1 * 1 * 1 `cubes.

Each value v = grid[i][j] represents a tower of v cubes placed on top of grid cell (i, j).

Return the total surface area of the resulting shapes.

Example 1:

Input: [[2]]
Output: 10

Example 2:

Input: [[1,2],[3,4]]
Output: 34

Example 3:

Input: [[1,0],[0,2]]
Output: 16

Example 4:

Input: [[1,1,1],[1,0,1],[1,1,1]]
Output: 32

Example 5:

Input: [[2,2,2],[2,1,2],[2,2,2]]
Output: 46

Note:

  • 1 <= N <= 50
  • 0 <= grid[i][j] <= 50

这道题给了我们一个二维数组 grid,其中 grid[i][j] 表示在位置 (i,j) 上累计的小正方体的个数,实际上就像搭积木一样,由这些小正方体来组成一个三维的物体,这里让我们求这个三维物体的表面积。我们知道每个小正方体的表面积是6,若在同一个位置累加两个,表面积就是10,三个累加到了一起就是14,其实是有规律的,n个小正方体累在一起,表面积是 4n+2。现在不仅仅是累加在一个小正方体上,而是在 nxn 的区间,累加出一个三维物体。由于之前做过那道三维物体投影的题 [Projection Area of 3D Shapes](https://www.cnblogs.com/grandyang/p/10865485.html),所以博主很思维定势的想到是不是也跟投影有关,然后又想当然的认为三维物体每一个面的面积就是该方向的投影,那么我们把三个方向的投影之和算出来,再乘以2不就是表面积了么?实际上这种方法是错误的,就拿题目中的例子4来说,当中间的小方块缺失了之后,实际上缺失的地方会产生出四个新的面,而这四个面是应该算在表面积里的,但是用投影的方法是没法算进去的。无奈只能另辟蹊径,实际上这道题正确的思路是一个位置一个位置的累加表面积,就类似微积分的感觉,前面提到了当n个小正方体累到一起的表面积是 4n+1,而这个n就是每个位置的值 grid[i][j],当你在旁边紧挨着再放一个累加的物体时,二者就会产生重叠,重叠的面数就是二者较矮的那堆正方体的个数再乘以2,明白了这一点,我们就可以从 (0,0) 位置开始累加,先根据 grid[0][0] 的值算出若仅有该位置的三维物体的表面积,然后向 (0,1) 位置遍历,同样要先根据 grid[0][1] 的值算出若仅有该位置的三维物体的表面积,跟之前 grid[0][0] 的累加,然后再减去遮挡住的面积,通过 max(grid[0][0],grid[0][1])x2 来得到,这样每次可以计算出水平方向的遮挡面积,同时还需要减去竖直方向的遮挡面积 min(grid[i][j],grid[i-1][j])x2,这样才能算出正确的表面积,参见代码如下:

class Solution {
public:
int surfaceArea(vector<vector<int>>& grid) {
int n = grid.size(), res = 0;
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
if (grid[i][j] > 0) res += 4 * grid[i][j] + 2;
if (i > 0) res -= min(grid[i][j], grid[i - 1][j]) * 2;
if (j > 0) res -= min(grid[i][j], grid[i][j - 1]) * 2;
}
}
return res;
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/892

类似题目:

Projection Area of 3D Shapes

参考资料:

https://leetcode.com/problems/surface-area-of-3d-shapes/

https://leetcode.com/problems/surface-area-of-3d-shapes/discuss/163414/C%2B%2BJava1-line-Python-Minus-Hidden-Area

[LeetCode All in One 题目讲解汇总(持续更新中...)](https://www.cnblogs.com/grandyang/p/4606334.html)

[LeetCode] 892. Surface Area of 3D Shapes 三维物体的表面积的更多相关文章

  1. LeetCode 892 Surface Area of 3D Shapes 解题报告

    题目要求 On a N * N grid, we place some 1 * 1 * 1 cubes. Each value v = grid[i][j] represents a tower of ...

  2. 【Leetcode_easy】892. Surface Area of 3D Shapes

    problem 892. Surface Area of 3D Shapes 题意:感觉不清楚立方体是如何堆积的,所以也不清楚立方体之间是如何combine的.. Essentially, compu ...

  3. 【LeetCode】892. Surface Area of 3D Shapes 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址:https://leetcode.c ...

  4. 892. Surface Area of 3D Shapes

    问题 NxN个格子中,用1x1x1的立方体堆叠,grid[i][j]表示坐标格上堆叠的立方体个数,求这个3D多边形的表面积. Input: [[1,2],[3,4]] Output: 34 思路 只要 ...

  5. [LeetCode&Python] Problem 892. Surface Area of 3D Shapes

    On a N * N grid, we place some 1 * 1 * 1 cubes. Each value v = grid[i][j] represents a tower of v cu ...

  6. 【leetcode】892. Surface Area of 3D Shapes

    题目如下: 解题思路:对于v = grid[i][j],其表面积为s = 2 + v*4 .接下来只要在判断其相邻四个方向有没有放置立方体,有的话减去重合的面积即可. 代码如下: class Solu ...

  7. [LeetCode] 883. Projection Area of 3D Shapes 三维物体的投影面积

    On a N * N grid, we place some 1 * 1 * 1 cubes that are axis-aligned with the x, y, and z axes. Each ...

  8. C#LeetCode刷题之#892-三维形体的表面积(Surface Area of 3D Shapes)

    问题 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/4136 访问. 在 N * N 的网格上,我们放置一些 1 * 1 ...

  9. [Swift]LeetCode892. 三维形体的表面积 | Surface Area of 3D Shapes

    On a N * N grid, we place some 1 * 1 * 1 cubes. Each value v = grid[i][j] represents a tower of v cu ...

随机推荐

  1. 六、显式锁和AQS

    显式锁和AQS 一.显式锁 ​ Synchronized 关键字结合对象的监视器,JVM 为我们提供了一种『内置锁』的语义,这种锁很简便,不需要我们关心加锁和释放锁的过程,我们只需要告诉虚拟机哪些代码 ...

  2. C# 5.0 新特性之异步方法(AM)

    Ø  前言 C# Asynchronous Programming(异步编程)有几种实现方式,其中 Asynchronous Method(异步方法)就是其中的一种.异步方法是 C#5.0 才有的新特 ...

  3. Budgie Desktop in Linux 无法使用触摸板右键功能

    问题描述 Budgie桌面在Linux环境下很好用,不过最近发现触摸板的右键功能是不可用的 解决方法 经查阅Gnome官方文档(Budgie有很多功能基于Gnome)发现是Gnome官方把这个功能去掉 ...

  4. ElasticSearch简介(一)——基础

    基本概念 1.  Node 与 Cluster Elastic 本质上是一个分布式数据库,允许多台服务器协同工作,每台服务器可以运行多个 Elastic 实例. 单个 Elastic 实例称为一个节点 ...

  5. c# 移除类中所有事件的绑定

    单例中为防止多处注册事件引起异步触发时发生报错,网上找了一圈没找到想要的方法. [异常类型]:ArgumentException[异常信息]:该委托必须有一个目标(且仅有一个目标). 结合网上资料整合 ...

  6. Python - 获取本机IP地址、Mac地址

    Python - 获取本机IP地址.Mac地址 在python中获取ip地址和在php中有很大不同,在php中往往比较简单.那再python中怎么做呢? 直接看代码: # Python - 获取本机I ...

  7. C 函数指针、回调函数

    参考链接:https://www.runoob.com/cprogramming/c-fun-pointer-callback.html 函数指针 函数指针就是执行函数的指针,他可以像正常函数一样去调 ...

  8. AutoLayout的使用

    虽然苹果提供了AutoresizingMask的布局方式,这个方式局限性太大:只能解决父控件和子控件间的相对关系: 因此,推出了AutoLayout:苹果官方也是推荐开发者尽量使用autolayout ...

  9. LeeCode——Combine Two Tables

    Table: Person +-------------+---------+ | Column Name | Type | +-------------+---------+ | PersonId ...

  10. 获得用户的真实ip HTTP_X_FORWARDED_FOR

    工作中经常会有有获得用户真实ip的情况,HTTP_X_FORWARDED_FOR总是忘记,所以我这里记录下来吧. 在PHP 中使用 [“REMOTE_ADDR”] 来取得客户端的 IP 地址,但如果客 ...