generator 1(2019年牛客多校第五场B题+十进制矩阵快速幂)
题目链接
思路
十进制矩阵快速幂。
代码
#include <set>
#include <map>
#include <deque>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <bitset>
#include <cstdio>
#include <string>
#include <vector>
#include <cassert>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
typedef pair<LL, LL> pLL;
typedef pair<LL, int> pLi;
typedef pair<int, LL> pil;;
typedef pair<int, int> pii;
typedef unsigned long long uLL;
#define lson (rt<<1),L,mid
#define rson (rt<<1|1),mid + 1,R
#define lowbit(x) x&(-x)
#define name2str(name) (#name)
#define bug printf("*********\n")
#define debug(x) cout<<#x"=["<<x<<"]" <<endl
#define FIN freopen("/home/dillonh/CLionProjects/Dillonh/in.txt","r",stdin)
#define IO ios::sync_with_stdio(false),cin.tie(0)
const double eps = 1e-8;
const int mod = 1000000007;
const int maxn = 1000000 + 7;
const double pi = acos(-1);
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3fLL;
int MOD;
char s[maxn];
struct matrix {
int a[2][2];
matrix operator * (const matrix& x) const {
matrix b;
for(int i = 0; i < 2; ++i) {
for(int j = 0; j < 2; ++j) {
b.a[i][j] = 0;
for(int k = 0; k < 2; ++k) {
b.a[i][j] = (b.a[i][j] + 1LL * a[i][k] * x.a[k][j] % MOD) % MOD;
}
}
}
return b;
}
}x, A[10];
matrix qpow(matrix x, int n) {
matrix b;
memset(b.a, 0, sizeof(b.a));
b.a[0][0] = b.a[1][1] = 1;
while(n) {
if(n & 1) b = b * x;
x = x * x;
n >>= 1;
}
return b;
}
int main() {
#ifndef ONLINE_JUDGE
FIN;
#endif
memset(x.a, 0, sizeof(x.a));
scanf("%d%d%d%d", &x.a[0][1], &x.a[0][0], &A[1].a[0][0], &A[1].a[1][0]);
A[1].a[0][1] = 1;
scanf("%s%d", s + 1, &MOD);
for(int i = 2; i <= 9; ++i) A[i] = A[i-1] * A[1];
int n = strlen(s + 1);
matrix ans = A[s[1]-'0'];
for(int i = 2; i <= n; ++i) {
ans = qpow(ans, 10);
if(s[i] > '0') {
ans = ans * A[s[i]-'0'];
}
}
ans = x * ans;
printf("%d\n", ans.a[0][1]);
return 0;
}
generator 1(2019年牛客多校第五场B题+十进制矩阵快速幂)的更多相关文章
- Distance(2019年牛客多校第八场D题+CDQ+树状数组)
题目链接 传送门 思路 这个题在\(BZOJ\)上有个二维平面的版本(\(BZOJ2716\)天使玩偶),不过是权限题因此就不附带链接了,我也只是在算法进阶指南上看到过,那个题的写法是\(CDQ\), ...
- 2019年牛客多校第四场 B题xor(线段树+线性基交)
题目链接 传送门 题意 给你\(n\)个基底,求\([l,r]\)内的每个基底是否都能异或出\(x\). 思路 线性基交板子题,但是一直没看懂咋求,先偷一份咖啡鸡板子写篇博客吧~ 线性基交学习博客:传 ...
- Palindrome Mouse(2019年牛客多校第六场C题+回文树+树状数组)
目录 题目链接 题意 思路 代码 题目链接 传送门 题意 问\(s\)串中所有本质不同的回文子串中有多少对回文子串满足\(a\)是\(b\)的子串. 思路 参考代码:传送门 本质不同的回文子串肯定是要 ...
- Find the median(2019年牛客多校第七场E题+左闭右开线段树)
题目链接 传送门 题意 每次往集合里面添加一段连续区间的数,然后询问当前集合内的中位数. 思路 思路很好想,但是卡内存. 当时写的动态开点线段树没卡过去,赛后机房大佬用动态开点过了,\(tql\). ...
- Explorer(2019年牛客多校第八场E题+线段树+可撤销并查集)
题目链接 传送门 题意 给你一张无向图,每条边\(u_i,v_i\)的权值范围为\([L_i,R_i]\),要经过这条边的条件是你的容量要在\([L_i,R_i]\),现在问你你有多少种容量使得你可以 ...
- 2019年牛客多校第三场 F题Planting Trees(单调队列)
题目链接 传送门 题意 给你一个\(n\times n\)的矩形,要你求出一个面积最大的矩形使得这个矩形内的最大值减最小值小于等于\(M\). 思路 单调队列滚动窗口. 比赛的时候我的想法是先枚举长度 ...
- 2019牛客多校第八场 F题 Flowers 计算几何+线段树
2019牛客多校第八场 F题 Flowers 先枚举出三角形内部的点D. 下面所说的旋转没有指明逆时针还是顺时针则是指逆时针旋转. 固定内部点的答案的获取 anti(A)anti(A)anti(A)或 ...
- 2020牛客多校第八场K题
__int128(例题:2020牛客多校第八场K题) 题意: 有n道菜,第i道菜的利润为\(a_i\),且有\(b_i\)盘.你要按照下列要求给顾客上菜. 1.每位顾客至少有一道菜 2.给顾客上菜时, ...
- 2019牛客多校第五场 B - generator 1 矩阵快速幂+十倍增+二进制倍增优化
B - generator 1 题意 给你\(x_{0}.x_{1}.a.b.b.mod\),根据\(x_{i} = a*x_{i-1} + b*x_{i-2}\)求出\(x_{n}\) 思路 一般看 ...
随机推荐
- node.js与mysql数据库的交互
我们已经建好了数据库也建好了表,现在我们想查询数据库表中的内容,应该怎么做呢? 代码如下: var mysql = require('mysql'); //导入mysql包模块 var connect ...
- 【Comet OJ - Contest #0 A】解方程(数学水题)
点此看题面 大致题意: 给定自然数\(n\),让你求出方程\(\sqrt{x-\sqrt n}+\sqrt y-\sqrt z=0\)的自然数解\(x,y,z\)的数量以及所有解\(xyz\)之和. ...
- Linux性能优化实战学习笔记:第四十四讲
一.上节回顾 上一节,我们学了网络性能优化的几个思路,我先带你简单复习一下. 在优化网络的性能时,你可以结合 Linux 系统的网络协议栈和网络收发流程,然后从应用程序.套接字.传输层.网络层再到链路 ...
- 第01组 Beta冲刺(4/5)
队名:007 组长博客: https://www.cnblogs.com/Linrrui/p/12019233.html 作业博客: https://edu.cnblogs.com/campus/fz ...
- Scala 准引用 - Quasiquote介绍
Quasiquotes are a neat notation that lets you manipulate Scala syntax trees with ease: scala> val ...
- base62与long的相互转换
public static class Converter { private static String keys = "0123456789abcdefghijklmnopqrstuvw ...
- 如何用代码设置机器人初始坐标实现 2D Pose Estimate功能
前言:ROS机器人有时候会遇到极端的情况:比如地面打滑严重,IMU精度差,导致积累误差严重,或是amcl匹配错误,导致机器人定位失败, 这时候如何矫正机器人位置变得非常重要,我的思路是利用相机或是在地 ...
- SQL Server ---------- 分离数据库 生成 .mdf文件
1.首先查看你要分离的数据库存储的位置 选中需要分离的数据数据库右击鼠标点击属性 要是记不住建议 复制一下 2.分离数据库 生成 .mdf 文件 右击 -----> 任务 -- ...
- [转帖]linux lsof 用法简介
linux lsof 用法简介 https://www.cnblogs.com/saneri/p/5333333.html 1.简介: lsof(list open files)是一个列出当前系统打开 ...
- 全链路追踪技术选型:pinpoint vs skywalking
目前分布式链路追踪系统基本都是根据谷歌的<Dapper大规模分布式系统的跟踪系统>这篇论文发展而来,主流的有zipkin,pinpoint,skywalking,cat,jaeger等. ...