2875: [Noi2012]随机数生成器

Time Limit: 10 Sec Memory Limit: 512 MB

Submit: 2052 Solved: 1118

Description

栋栋最近迷上了随机算法,而随机数是生成随机算法的基础。栋栋准备使用线性同余法(Linear Congruential Me

thod)来生成一个随机数列,这种方法需要设置四个非负整数参数m,a,c,X[0],按照下面的公式生成出一系列随机

数X[n]X[n+1]=(aX[n]+c)mod m其中mod m表示前面的数除以m的余数。从这个式子可以看出,这个序列的下一个数

总是由上一个数生成的。用这种方法生成的序列具有随机序列的性质,因此这种方法被广泛地使用,包括常用的C+

+和Pascal的产生随机数的库函数使用的也是这种方法。栋栋知道这样产生的序列具有良好的随机性,不过心急的

他仍然想尽快知道X[n]是多少。由于栋栋需要的随机数是0,1,…,g-1之间的,他需要将X[n]除以g取余得到他想要

的数,即X[n] mod g,你只需要告诉栋栋他想要的数X[n] mod g是多少就可以了。

Input

包含6个用空格分割的m,a,c,X0,n和g,其中a,c,X0是非负整数,m,n,g是正整数。

Output

输出一个数,即Xn mod g

Sample Input

11 8 7 1 5 3

Sample Output

2

/*
矩阵乘法.
随便推一推就好了.
这题爆longlong,用慢速乘搞一搞.
*/
#include<iostream>
#include<cstdio>
#define LL unsigned long long
using namespace std;
LL n,a1,c1,x0,m,g,a[3][3],b[3][3],c[3][3],ans[3][3];
LL mul(LL x,LL y)
{
LL tot=0;
while(y)
{
if(y&1)
{
y--;
tot=(tot+x)%m;
}
x=(x+x)%m;
y>>=1;
}
return tot;
}
void mi()
{
while(n)
{
if(n&1)
{
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
for(int k=1;k<=2;k++)
c[i][j]=(c[i][j]+mul(ans[i][k],b[k][j])%m)%m;
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
ans[i][j]=c[i][j],c[i][j]=0;
}
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
for(int k=1;k<=2;k++)
c[i][j]=(c[i][j]+mul(b[i][k],b[k][j])%m)%m;
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
b[i][j]=c[i][j],c[i][j]=0;
n>>=1;
}
}
void slove()
{
ans[1][1]=x0,ans[1][2]=c1;
b[1][1]=a1,b[2][1]=1,b[2][2]=1;
mi();
cout<<ans[1][1]%g;
}
int main()
{
cin>>m>>a1>>c1>>x0>>n>>g;
slove();
return 0;
}

Bzoj 2875: [Noi2012]随机数生成器(矩阵乘法)的更多相关文章

  1. BZOJ 2875: [Noi2012]随机数生成器( 矩阵快速幂 )

    矩阵快速幂...+快速乘就OK了 ----------------------------------------------------------------------------------- ...

  2. bzoj 2875: [Noi2012]随机数生成器

    #include<cstdio> #include<iostream> #include<cstring> #define ll long long using n ...

  3. [NOI2012]随机数生成器 矩阵乘法

    Code: #include<cstdio> #include<algorithm> #include<iostream> #include<cstring& ...

  4. BZOJ-2875 随机数生成器 矩阵乘法快速幂+快速乘

    题目没给全,吃X了... 2875: [Noi2012]随机数生成器 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 1479 Solved: 829 ...

  5. [vijos1725&bzoj2875]随机数生成器<矩阵乘法&快速幂&快速乘>

    题目链接:https://vijos.org/p/1725 http://www.lydsy.com/JudgeOnline/problem.php?id=2875 这题是前几年的noi的题,时间比较 ...

  6. 【BZOJ】2875: [Noi2012]随机数生成器(矩阵乘法+快速乘)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2875 矩阵的话很容易看出来.....我就不写了.太水了. 然后乘法longlong会溢出...那么我 ...

  7. 2875: [Noi2012]随机数生成器 - BZOJ

    DescriptionInput 包含6个用空格分割的m,a,c,X0,n和g,其中a,c,X0是非负整数,m,n,g是正整数. Output 输出一个数,即Xn mod gSample Input ...

  8. [luogu2044][NOI2012] 随机数生成器 [矩阵快速幂]

    题面: 传送门 思路: 看一眼这个公式: $x\left[n+1\right]=\left(a\ast x\left[n\right]+c\right) mod m$ 递推,数据范围$n\leq 10 ...

  9. [日常摸鱼]bzoj2875[NOI2012]随机数生成器-矩阵快速幂

    好裸的矩阵快速幂-然而我一开始居然构造不出矩阵- 平常两个的情况都是拿相邻两项放在矩阵里拿去递推的-然后我就一直构造不出来-其实把矩阵下面弄成1就好了啊orz #include<cstdio&g ...

随机推荐

  1. 「LibreOJ NOI Round #2」不等关系

    「LibreOJ NOI Round #2」不等关系 解题思路 令 \(F(k)\) 为恰好有 \(k\) 个大于号不满足的答案,\(G(k)\) 表示钦点了 \(k\) 个大于号不满足,剩下随便填的 ...

  2. extend Thread 和 implements Runnable

    原文地址:extend Thread 和 implements Runnable 一个Thread的实例只能产生一个线程 or: 同一实例(Runnable实例)的多个线程 look: public ...

  3. C#_WPF中创建二维码、识别二维码

    第三方库: WPFMediaKit.dll (WPFMediaKit摄像头处理) zing.dll NuGet安装这两个第三方dll 项目截图预览: 项目代码: using System; using ...

  4. git下,输入git log 进入log 怎么退出

    解决方案: 英文状态下按Q就可以了 ctrl + c (应该是Linux命令中断的意思,很多中断都是这个命令). Paste_Image.png

  5. webpack--splitChunksPlugin配置学习随笔

    该配置用于代码抽离.官方文档 官方默认配置: module.exports = { //... optimization: { splitChunks: { chunks: 'async', // 异 ...

  6. centos7开启80端口及其他端口

    首先centos7的防火墙由iptables改为了firewalld 1. 执行命令:firewall-cmd --zone=public --add-port=80/tcp  --permanent ...

  7. 208道Java常见的面试题

    一.Java 基础 1.JDK 和 JRE 有什么区别? JRE=JVM+各种基础类库+java类库(String\System) JDK>JRE>JVM JRE:是java运行时环境  ...

  8. js 数组的深度拷贝 的四种实现方法

    首先声明本人资质尚浅,本文只用于个人总结.如有错误,欢迎指正.共同提高. --------------------------------------------------------------- ...

  9. Elasticsearch 是什么

    Elasticsearch 是什么 Elasticsearch是一个基于Apache Lucene(TM)的开源搜索引擎.无论在开源还是专有领域,Lucene可以被认为是迄今为止最先进.性能最好的.功 ...

  10. Linux磁盘管理——directory tree与mount point

    参考:/sys 和 /dev 区别 Linux磁盘管理——虚拟文件系统 Directory tree Linux内的所有数据都是以文件的形态来呈现的,所以整个Linux系统最重要的地方就是direct ...