【概率论】6-2:大数定理(The Law of Large Numbers)
title: 【概率论】6-2:大数定理(The Law of Large Numbers)
categories:
- Mathematic
- Probability
keywords:
- Markov Inequality
- Chebyshev Inequality
- Sample Mean
- The Law of Large Numbers
toc: true
date: 2018-04-07 21:07:42
Abstract: 本文介绍马尔科夫不等式,切比雪夫不等式,样本均值,和大数定理的知识内容
Keywords: Markov Inequality,Chebyshev Inequality,Sample Mean,The Law of Large Numbers
开篇废话
最早做图像处理的时候建了一个QQ群,后来在里面认识了图像处理第一份工作的老板,后来离开了群,因为里面很多人基本都是来凑热闹的,所以质量堪忧,今天我又建了一个本博客的微信群,希望群内的同学们,能找到自己喜欢的方向,深入到自己热爱的领域,其实如果我的这些文字能帮助三五十个人,说实话,我自己感觉比那些小作坊身价过亿的小老板对社会的贡献更大一些。所以继续努力,戒骄戒躁。
想加入我们的同学,可以看目录页里面有进群的方法。
若干个拥有相同分布的独立随机变量的均值,被称为样本均值(“样本期望”等表述同一概念:Sample Mean),这些被选取出来的随机变量被称为样本。样本均值对于样本的信息描述,类似于一个分布的期望对这个分布的描述。注意这句话有两个信息:
- 我们前面介绍的均值,期望都是针对分布的。
- 样本的均值不同于分布的均值,但是有很多相似之处。
本节我们就会介绍一些结果来表明,“样本均值”和“组成随机样本的单个随机变量”之间的关系。
The Markov and Chebyshev Inequalities
在学习均值的时候讲到过有关重心类似的概念,也就是说当我们改变分布,让小概率对应一个大的值的时候,比如离散情况下随机变量值 {1,100,0.1}\{1,100,0.1\}{1,100,0.1} 对应于概率 {0.1,0.01,0.89}\{0.1,0.01,0.89\}{0.1,0.01,0.89} 这时的期望是 1×0.1+100×0.01+0.1×0.89=1.1891\times 0.1+100\times 0.01 + 0.1\times 0.89=1.1891×0.1+100×0.01+0.1×0.89=1.189 也可以说重心在1.189这个位置,如果我们调整下,让大的随机变量值对应到大概率 {1,0.1,100}\{1,0.1,100\}{1,0.1,100} 对应于概率 {0.1,0.01,0.89}\{0.1,0.01,0.89\}{0.1,0.01,0.89} 这时的期望是 1×0.1+0.1×0.01+100×0.89=89.1011\times 0.1+0.1\times 0.01 + 100\times 0.89=89.1011×0.1+0.1×0.01+100×0.89=89.101 显然这个重心发生了明显的偏移,但是我们有个新想法,如果我们有很多个离散随机变量值,或者是连续分布的随机变量,我们在固定分布均值的情况下,有多少随机变量值可以调整位置呢?
Markov Inequality
Theorem Markov Inequality.Suppose that XXX is a random variable such that Pr(X≥0)=1Pr(X\geq 0)=1Pr(X≥0)=1 .Then for every real number t>0t>0t>0 ,
Pr(X≥t)≤E(X)t
Pr(X\geq t)\leq \frac{E(X)}{t}
Pr(X≥t)≤tE(X)
证明思路的话我们就用一个离散分布来证明上面这个不等式的正确性然后延伸到连续情况。
证明:
- 假设 XXX 有一个离散分布,其p.f.是 fff
- 那么 XXX 的期望是:
E(X)=∑xxf(x)=∑x<txf(x)+∑x≥txf(x)
E(X)=\sum_{x}xf(x)=\sum_{x<t}xf(x)+\sum_{x\geq t}xf(x)
E(X)=x∑xf(x)=x<t∑xf(x)+x≥t∑xf(x) - 因为我们在条件中规定 X≥0X\geq 0X≥0 那么,上面的求和部分都是大于等于0的。
- 所以我们有:
E(X)=∑x≥txf(x)≥∑x≥ttf(x)=tPr(X≥t)
E(X)=\sum_{x\geq t}xf(x)\geq \sum_{x\geq t}tf(x)=tPr(X\geq t)
E(X)=x≥t∑xf(x)≥x≥t∑tf(x)=tPr(X≥t) - 根据 t>0t>0t>0 得出我们要的结论:
E(X)≥tPr(X≥t)⇒Pr(X≥t)≤E(X)t
E(X)\geq t Pr(X\geq t)\Rightarrow Pr(X\geq t)\leq\frac{E(X)}{t}
E(X)≥tPr(X≥t)⇒Pr(X≥t)≤tE(X) - 证毕
完整原文地址:https://www.face2ai.com/Math-Probability-6-2-The-Law-of-Large-Numbers转载请标明出处
【概率论】6-2:大数定理(The Law of Large Numbers)的更多相关文章
- Law of large numbers and Central limit theorem
大数定律 Law of large numbers (LLN) 虽然名字是 Law,但其实是严格证明过的 Theorem weak law of large number (Khinchin's la ...
- 中心极限定理 | central limit theorem | 大数定律 | law of large numbers
每个大学教材上都会提到这个定理,枯燥地给出了定义和公式,并没有解释来龙去脉,导致大多数人望而生畏,并没有理解它的美. <女士品茶>有感 待续~ 参考:怎样理解和区分中心极限定理与大数定律?
- Markov and Chebyshev Inequalities and the Weak Law of Large Numbers
https://www.math.wustl.edu/~russw/f10.math493/chebyshev.pdf http://www.tkiryl.com/Probability/Chapte ...
- 大数定律(Law of Large Numbers)
大数定律:每次从总体中随机抽取1个样本,这样抽取很多次后,样本的均值会趋近于总体的期望.也可以理解为:从总体中抽取容量为n的样本,样本容量n越大,样本的均值越趋近于总体的期望.当样本容量极大时,样本均 ...
- uva10392 Factoring Large Numbers
uva10392 Factoring Large Numbers 本文涉及的知识点是,使用线性筛选法得到素数表. Table of Contents 1 题目 2 思路 3 参考 1 题目 ===== ...
- [Typescript] Improve Readability with TypeScript Numeric Separators when working with Large Numbers
When looking at large numbers in code (such as 1800000) it’s oftentimes difficult for the human eye ...
- [Reinforcement Learning] Model-Free Prediction
上篇文章介绍了 Model-based 的通用方法--动态规划,本文内容介绍 Model-Free 情况下 Prediction 问题,即 "Estimate the value funct ...
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 3 The law of averages, and expected values
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- [转]概率基础和R语言
概率基础和R语言 R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大. R语言作为统计学一门语言,一直在小众领域闪耀着光芒.直到大数据的爆发,R语 ...
随机推荐
- 服务端技术选型与考虑(go)
- 使用Jenkins自带功能(不用shell)构建Docker镜像并推送到远程仓库
意义: 一开始实现这个目的是在Jenkins中使用的shell脚本,也就是如下的这个: bash # 进入到生成jar包的根目录 cd ${WORKSPACE}/${module_filename} ...
- node-red 使用 创建第一个流程
前言 这只是一个简单的示例,具体详细文档去官网查看 官网指南:https://nodered.org/docs/user-guide/ 打开浏览器,进入编辑器页面:http://localhost:1 ...
- node-red 安装
介绍 Node-RED背景介绍• Node-Red是IBM公司开发的一个可视化的编程工具.它允许程序员通过组合各部件来编写应用程序.这些部件可以是硬件设备(如:Arduino板子).Web API(如 ...
- 正则表达式"(^|&)" ,什么意思?
^匹配字符串开头,&就是&字符 (^|&)匹配字符串开头或者&字符,如果其后还有正则,那么必须出现在字符串开始或&字符之后 用法一: 限定开头 文档上给出了 ...
- 树莓派Raspbian系统格式化挂载硬盘
1.查看树莓派系统挂载的储存设备 使用工具查看系统识别到的硬盘设备,命令: fdisk -l /dev/sda 和 /dev/sdb 分别是两块硬盘. 2.修改硬盘分区 Linux和windows一 ...
- Java开发环境搭建(一)
一.JDK与JRE JDK:Java Development Kit,Java开发工具包,是给开发人员使用的,其中包含了Java的开发工具,如java.javac.jar等命令,同时也包含了JRE. ...
- 【洛谷 P3041】 [USACO12JAN]视频游戏的连击Video Game Combos(AC自动机,dp)
题目链接 手写一下AC自动机(我可没说我之前不是手写的) Trie上dp,每个点的贡献加上所有是他后缀的串的贡献,也就是这个点到根的fail链的和. #include <cstdio> # ...
- 解决cxf+springmvc发布的webservice,缺少types,portType和message标签的问题
用cxf+spring发布了webservice,发现生成的wsdl的types,message和portType都以import的方式导入的.. 原因:命名空间问题 我想要生成的wsdl在同个文件中 ...
- Qt ListWidget item 发起拖放
第一步:重写类 MyListWidget 继承自 QListWidget 第二步:重写 mousePressEvent 函数 和 mouseMoveEvent 函数 void mousePressEv ...