题目

有一个 $N \times M$ 大小的格子,从(0, 0)出发,每一步朝着上下左右4个格子中可以移动的格子等概率移动。另外有些格子有石头,因此无法移至这些格子。求第一次到达 $(N-1, M-1)$ 格子的期望步数。($2 \leq N,M\leq 10$)

分析

设 $E(x, y)$ 表示从 (x, y) 出发到终点的期望步数。

我们先考虑从 $(x, y)$  向上下左右4个方向都可以移动的情况,由于向4个方向的移动的概率是相等的,因此可以建立如下关系:

$$
\begin{aligned}
E(x, y) & =  \frac{1}{4}(E(x-1, y)+1) + \frac{1}{4}(E(x+1,y)+1) + \frac{1}{4}(E(x, y-1)+1) + \frac{1}{4}(E(x, y+1)+1)\\
&=\frac{1}{4}(E(x-1, y) + E(x+1, y) + E(x, y-1) + E(x, y+1)) + 1\\
\end{aligned}$$

如果移动不是等概率,只需要把 1/4 改成相应的数值就可以了。

如果存在不能移动的方向,我们也可以列出类似的式子。

为了使方程有唯一解,我们令有石头的格子和无法到达的格子都有 $E(x, y) = 0$。

把得到的 $N \times M$ 个方程联立,就可以解出期望步数。

#include<bits/stdc++.h>
using namespace std; const int maxn = +;
const int maxm = +;
char grid[maxn][maxm+];
int N, M; bool vis[maxn][maxm]; //can[x][y]为true表示(x, y)能够达到终点
const int dx[] = {-, , , };
const int dy[] = {, , , -}; //搜索可以达到终点的点
void dfs(int x, int y)
{
vis[x][y] = true;
for(int i = ;i < ;i++)
{
int nx = x + dx[i], ny = y + dy[i];
if(nx >= && nx <N && ny >= && ny < M && !vis[nx][ny])
if(grid[nx][ny] != '#') dfs(nx, ny);
}
} const double eps = 1e-;
typedef double Matrix[maxn*maxm][maxn*maxm]; //结果为A[i][n]/A[i][i]
void gauss_jordan(Matrix A, int n)
{ int i, j, k, r;
for(i = ;i < n;i++)
{
//选绝对值一行r并与第i行交换
r = i;
for(j = i+;j < n;j++)
if(fabs(A[j][i]) > fabs(A[r][i])) r = j;
if(fabs(A[r][i]) < eps) continue; //放弃这一行,直接处理下一行
if(r != i) for(j = ;j <= n;j++) swap(A[r][j], A[i][j]); //与除第i行外的其他行进行消元
for(k = ;k < n;k++) if(k != i)
for(j = n;j >= i;j--) A[k][j] -= A[k][i] / A[i][i] * A[i][j];
}
} void debug_print(Matrix A, int n)
{
for(int i = ;i < n;i++)
for(int j = ;j < n;j++)
printf("%f%c", A[i][j], j == n- ? '\n' : ' ');
} Matrix A; int main()
{
scanf("%d%d", &N, &M);
for(int i = ;i < N;i++)
{
char s[];
scanf("%s", s);
for(int j = ;j < M;j++) grid[i][j] = s[j];
} dfs(, ); //构建矩阵
for(int i = ;i < N;i++)
for(int j = ;j < M;j++)
{
if((i == N- && j == M-) || !vis[i][j]) //终点/无法到达的点,令期望步数为0
{
A[i*M + j][i*M + j] = ;
continue;
}
int move = ;
for(int k = ;k <;k++)
{
int nx = i + dx[k], ny = j + dy[k];
if(nx >= && nx < N && ny >= && ny < M && grid[nx][ny] == '.')
{
A[i*M + j][nx*M + ny] = -;
move++;
}
}
A[i*M + j][i*M + j] = A[i*M + j][N*M] = move;
} //debug_print(A, N*M+1); gauss_jordan(A, N*M); printf("%.8f\n", A[][N*M] / A[][]);
return ;
}

Random Walk——高斯消元法的更多相关文章

  1. 加入商品分类信息,考虑用户所处阶段的 图模型 推荐算法 Rws(random walk with stage)

    场景: 一个新妈妈给刚出生的宝宝买用品,随着宝宝的长大,不同的阶段需要不同的物品. 这个场景中涉及到考虑用户所处阶段,给用户推荐物品的问题. 如果使用用户协同过滤,则需要根据购买记录,找到与用户处于同 ...

  2. 从Random Walk谈到Bacterial foraging optimization algorithm(BFOA),再谈到Ramdom Walk Graph Segmentation图分割算法

    1. 从细菌的趋化性谈起 0x1:物质化学浓度梯度 类似于概率分布中概率密度的概念.在溶液中存在不同的浓度区域. 如放一颗糖在水盆里,糖慢慢溶于水,糖附近的水含糖量比远离糖的水含糖量要高,也就是糖附近 ...

  3. 醉汉随机行走/随机漫步问题(Random Walk Randomized Algorithm Python)

    世界上有些问题看似是随机的(stochastic),没有规律可循,但很可能是人类还未发现和掌握这类事件的规律,所以说它们是随机发生的. 随机漫步(Random  Walk)是一种解决随机问题的方法,它 ...

  4. HDU 4579 Random Walk (解方程组)

    Random Walk Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 65535/65536 K (Java/Others)Total ...

  5. HDU 4487 Maximum Random Walk

    Maximum Random Walk Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  6. Python编程:从入门到实践 - matplotlib篇 - Random Walk

    随机漫步 # random_walk.py 随机漫步 from random import choice class RandomWalk(): """一个生成随机漫步数 ...

  7. [论文阅读笔记] Community aware random walk for network embedding

    [论文阅读笔记] Community aware random walk for network embedding 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 先前许多算法都 ...

  8. Hill Climber and Random Walk

  9. 【HDOJ】4579 Random Walk

    1. 题目描述一个人沿着一条长度为n个链行走,给出了每秒钟由i到j的概率($i,j \in [1,n]$).求从1开始走到n个时间的期望. 2. 基本思路显然是个DP.公式推导也相当容易.不妨设$dp ...

随机推荐

  1. 解决GitHub下载慢或下载失败问题

    1.登录自己的码云账户 码云网站:https://gitee.com/luckyplj8/events 2.新建一个仓库. 3.选择导入已有仓库. GitHub资源链接: 4.等待码云克隆项目,大概1 ...

  2. [IOT] - 使用 .Net Core 操作 GPIO 引脚点亮 LED 灯泡

    1. 在 VS 2019 中创建 .Net Core 控制台应用程序,使用 Nuget 安装程序包: System.Device.GpioIot.Device.Bindings 2. 更新 Main ...

  3. springboot异步线程

    前言 最近项目中出现了一个问题,发现自己的定时器任务在线上没有执行,但是在线下测试时却能执行,最后谷歌到了这篇文章SpringBoot踩坑日记-定时任务不定时了?; 本篇文章主要以自己在项目中遇到的问 ...

  4. js 数组传统方法

    js 数组传统方法 push() 功能:向数组的末尾添加一个或多个元素 var arr = [4]; arr.push(1,2,3); // [4,1,2,3] 返回: 会返回新数组的长度length ...

  5. SQL注入获取Sa账号密码

    漏洞位置:http://168.1.1.81/Information/Search?Keyword=1111 漏洞利用: MSSQL 2000 http://168.1.1.81/Informatio ...

  6. springboot集成drools的方式一

    springboot集成drools的方式一(spring-drools.xml) 本文springboot采用1.5.1.RELEASE版本,drools采用的6.5.0.Final,一共会讲三种方 ...

  7. 用lua求两个数组的交集、并集和补集。

    -- 克隆 function Clone(object) local lookup_table = { } local function _copy(object) if type(object) ~ ...

  8. DOS命令_查询某个端口的占用情况并释放

    >netstat -aon | findstr “80″Proto   Local Address           Foreign Address         State         ...

  9. 【RMAN】RMAN脚本中使用替换变量

    [RMAN]RMAN脚本中使用替换变量--windows 下rman全备脚本 一.1  BLOG文档结构图 一.2  前言部分 一.2.1  导读 各位技术爱好者,看完本文后,你可以掌握如下的技能,也 ...

  10. Keystore Problem: Cannot convert COMBINED of type class java.lang.String to class org.jivesoftware.openfire.spi.ConnectionType

    go to: Server Manager -> System Properties Search for "xmpp.socket.ssl.client.keypass" ...