最短路和次短路的条数(dijstra算法或spfa算法)POJ3463
http://poj.org/problem?id=3463
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 7252 | Accepted: 2581 |
Description
Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the bus moves from one city S to another city F. On this way, the tourists in the bus can see the sights alongside the route travelled. Moreover, the bus makes a number of stops (zero or more) at some beautiful cities, where the tourists get out to see the local sights.
Different groups of tourists may have different preferences for the sights they want to see, and thus for the route to be taken from S to F. Therefore, Your Personal Holiday wants to offer its clients a choice from many different routes. As hotels have been booked in advance, the starting city S and the final city F, though, are fixed. Two routes from S to F are considered different if there is at least one road from a city A to a city B which is part of one route, but not of the other route.
There is a restriction on the routes that the tourists may choose from. To leave enough time for the sightseeing at the stops (and to avoid using too much fuel), the bus has to take a short route from S to F. It has to be either a route with minimal distance, or a route which is one distance unit longer than the minimal distance. Indeed, by allowing routes that are one distance unit longer, the tourists may have more choice than by restricting them to exactly the minimal routes. This enhances the impression of a personal holiday.

For example, for the above road map, there are two minimal routes from S = 1 to F = 5: 1 → 2 → 5 and 1 → 3 → 5, both of length 6. There is one route that is one distance unit longer: 1 → 3 → 4 → 5, of length 7.
Now, given a (partial) road map of the Benelux and two cities S and F, tour operator Your Personal Holiday likes to know how many different routes it can offer to its clients, under the above restriction on the route length.
Input
The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:
One line with two integers N and M, separated by a single space, with 2 ≤ N ≤ 1,000 and 1 ≤ M ≤ 10, 000: the number of cities and the number of roads in the road map.
M lines, each with three integers A, B and L, separated by single spaces, with 1 ≤ A, B ≤ N, A ≠ B and 1 ≤ L ≤ 1,000, describing a road from city A to city B with length L.
The roads are unidirectional. Hence, if there is a road from A to B, then there is not necessarily also a road from B to A. There may be different roads from a city A to a city B.
One line with two integers S and F, separated by a single space, with 1 ≤ S, F ≤ N and S ≠ F: the starting city and the final city of the route.
There will be at least one route from S to F.
Output
For every test case in the input file, the output should contain a single number, on a single line: the number of routes of minimal length or one distance unit longer. Test cases are such, that this number is at most 109 = 1,000,000,000.
Sample Input
2
5 8
1 2 3
1 3 2
1 4 5
2 3 1
2 5 3
3 4 2
3 5 4
4 5 3
1 5
5 6
2 3 1
3 2 1
3 1 10
4 5 2
5 2 7
5 2 7
4 1
Sample Output
3
2
题意:给出一个有向图,起点和终点,然后询问最短路和次短路比最短路大1的总条数;
第一种:dijstra
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include"stdio.h"
#include"string.h"
#include"iostream"
#include"map"
#include"string"
#include"queue"
#include"stdlib.h"
#include"algorithm"
#include"vector"
#include"math.h"
#define M 1009
#define eps 1e-5
#define mod 100000000
#define inf 0x3f3f3f3f
using namespace std;
struct node
{
int v,w;
node(int vv,int ww)
{
v=vv;
w=ww;
}
};
vector<node>edge[M];
int dis[M][],vis[M][],num[M][];
void dij(int s,int t,int n)
{
int i,j;
memset(dis,inf,sizeof(dis));
memset(vis,,sizeof(vis));
dis[s][]=;
num[s][]=num[s][]=;
for(i=;i<=n*;i++)
{
int mini=inf;
int u=-;
int flag;
for(j=;j<=n;j++)
{
if(!vis[j][]&&mini>dis[j][])
{
flag=;
mini=dis[j][];
u=j;
}
else if(!vis[j][]&&mini>dis[j][])
{
flag=;
mini=dis[j][];
u=j;
}
}
if(u==-)break;
vis[u][flag]=;
for(j=;j<(int)edge[u].size();j++)
{
int v=edge[u][j].v;
int w=edge[u][j].w;
if(dis[v][]>mini+w)
{
dis[v][]=dis[v][];
dis[v][]=mini+w;
num[v][]=num[v][];
num[v][]=num[u][flag];
}
else if(dis[v][]==mini+w)
{
num[v][]+=num[u][flag];
}
else if(dis[v][]>mini+w)
{
dis[v][]=mini+w;
num[v][]=num[u][flag];
}
else if(dis[v][]==mini+w)
{
num[v][]+=num[u][flag];
}
}
}
int ans;
if(dis[t][]==dis[t][]+)
ans=num[t][]+num[t][];
else
ans=num[t][];
//printf("%d %d %d %d\n",dis[t][0],dis[t][1],num[t][0],num[t][1]);
printf("%d\n",ans);
}
int main()
{
int T,n,m,i;
cin>>T;
while(T--)
{
scanf("%d%d",&n,&m);
for(i=;i<=n;i++)
edge[i].clear();
for(i=;i<m;i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
edge[u].push_back(node(v,w));
}
int s,t;
scanf("%d%d",&s,&t);
dij(s,t,n);
}
return ;
}
第二种:spfa
#include"stdio.h"
#include"string.h"
#include"queue"
#include"stdlib.h"
#define M 1009
#define inf 0x3f3f3f3f
using namespace std;
struct Gra
{
int u,v,w,next;
}edge[M*];
int t,head[M],dis[M][],num[M][],use[M][];
void init()
{
t=;
memset(head,-,sizeof(head));
}
void add(int u,int v,int w)
{
edge[t].u=u;
edge[t].v=v;
edge[t].w=w;
edge[t].next=head[u];
head[u]=t++;
}
struct node
{
int v,flag,dis;
node(){}
node(int v,int dis,int flag)
{
this->v=v;
this->dis=dis;
this->flag=flag;
}
bool operator<(const node &a)const
{
return dis>a.dis;
}
};
void dij(int s,int n)
{
priority_queue<node>q;
memset(dis,inf,sizeof(dis));
memset(use,,sizeof(use));
dis[s][]=;
num[s][]=;
q.push(node(s,,));
while(!q.empty())
{
node cur=q.top();
int u=cur.v;
int flag=cur.flag;
q.pop();
if(use[u][flag])continue;
use[u][flag]=;
for(int i=head[u];~i;i=edge[i].next)
{
int v=edge[i].v;
if(dis[v][]>dis[u][flag]+edge[i].w)
{
dis[v][]=dis[v][];
dis[v][]=dis[u][flag]+edge[i].w;
num[v][]=num[v][];
num[v][]=num[u][flag];
q.push(node(v,dis[v][],));
q.push(node(v,dis[v][],));
}
else if(dis[v][]==dis[u][flag]+edge[i].w)
{
num[v][]+=num[u][flag];
}
else if(dis[v][]>dis[u][flag]+edge[i].w)
{
dis[v][]=dis[u][flag]+edge[i].w;
num[v][]=num[u][flag];
q.push(node(v,dis[v][],));
}
else if(dis[v][]==dis[u][flag]+edge[i].w)
{
num[v][]+=num[u][flag];
}
}
}
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int n,m;
scanf("%d%d",&n,&m);
init();
for(int i=;i<=m;i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);
}
int ss,tt;
scanf("%d%d",&ss,&tt);
dij(ss,n);
int ans=;
ans+=num[tt][];
if(dis[tt][]+==dis[tt][])
ans+=num[tt][];
printf("%d\n",ans);
}
return ;
}
最短路和次短路的条数(dijstra算法或spfa算法)POJ3463的更多相关文章
- Bellman-ford算法、SPFA算法求解最短路模板
Bellman-ford 算法适用于含有负权边的最短路求解,复杂度是O( VE ),其原理是依次对每条边进行松弛操作,重复这个操作E-1次后则一定得到最短路,如果还能继续松弛,则有负环.这是因为最长的 ...
- 图论之最短路算法之SPFA算法
SPFA(Shortest Path Faster Algorithm)算法,是一种求最短路的算法. SPFA的思路及写法和BFS有相同的地方,我就举一道例题(洛谷--P3371 [模板]单源最短路径 ...
- hdu1688(dijkstra求最短路和次短路)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1688 题意:第k短路,这里要求的是第1短路(即最短路),第2短路(即次短路),以及路径条数,最后如果最 ...
- HDU 1688 Sightseeing&HDU 3191 How Many Paths Are There(Dijkstra变形求次短路条数)
Sightseeing Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tota ...
- HDU 3416 Marriage Match IV (求最短路的条数,最大流)
Marriage Match IV 题目链接: http://acm.hust.edu.cn/vjudge/contest/122685#problem/Q Description Do not si ...
- HDU 3191 次短路长度和条数
http://www.cnblogs.com/wally/archive/2013/04/16/3024490.html http://blog.csdn.net/me4546/article/det ...
- POJ---3463 Sightseeing 记录最短路和次短路的条数
Sightseeing Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9247 Accepted: 3242 Descr ...
- HDU3191 【输出次短路条数】
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3191 How Many Paths Are There Time Limit: 2000/1000 M ...
- HDU 1688 Sightseeing 【输出最短路+次短路条数】
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1688 题目大意:给n个点,m条有向边.再给出起点s, 终点t.求出s到t的最短路条数+次短路条数. 思 ...
随机推荐
- 【转】iOS-APP如何做才安全
iOS应用的安全性 常常被大家忽视. iOS 如何做才安全: 1.首先,我们可以通过iTunes 下载 AppStore的ipa文件(苹果 把开发者上传的ipa包 进行了加壳再放到AppStore中) ...
- (三)使用预定义模型QDirModel的例子
使用预定义模型QDirModel的例子 Main.cpp #include <QApplication> #include "directoryviewer.h" in ...
- 启动hadoop 2.6遇到的datanode启动不了
转自 http://blog.csdn.net/zhangt85/article/details/42078347 查看日志如下: 2014-12-22 12:08:27,264 INFO org.m ...
- imx6 fec分析
/***************************************************************************** * imx6 fec分析 * 本文主要分析 ...
- PHP 正则表达式 及常用汇总
Δ 定界符 Δ 字符域 Δ 修饰符 Δ 限定符 Δ 脱字符 Δ 通配符(正向预查,反向预查) Δ 反向引用 Δ 惰性匹配 Δ 注释 Δ 零字符宽 1. 平时做网站经常 ...
- 使用ffmpeg实现合并多个音频为一个音频的方法
使用ffmpeg实现合并多个音频为一个音频的方法可以使用ffmpeg的filter功能来进行这个操作,而且效果很好amerge也可以实 使用ffmpeg实现合并多个音频为一个音频的方法 可以使用ffm ...
- VMWare -- 工作模式
VMWare提供三种工作模式桥接(bridge).NAT(网络地址转换)和host-only(主机模式). 桥接模式 在桥接模式下,VMWare虚拟出来的操作系统就像是局域网中的一台独立的主机(主机和 ...
- jquery -- 删除节点
jQuery提供了三种删除节点的方法,即remove(),detach()和empty(). 测试所用HTML代码: <p title="选择你最喜欢的水果?">你最喜 ...
- 【ML】概率图模型
http://wenku.baidu.com/link?url=-Fa32JAnvwS8fyWgdPjYLNGvmor42lWCT6N7TehNQAnx4ZVmJtC0L0SgnaLtEFMB9Gzw ...
- spring配置文件中bean标签
<bean id="beanId"(1) name="beanName"(2) class="beanClass"(3) parent ...