http://poj.org/problem?id=3463

Sightseeing
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 7252   Accepted: 2581

Description

Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the bus moves from one city S to another city F. On this way, the tourists in the bus can see the sights alongside the route travelled. Moreover, the bus makes a number of stops (zero or more) at some beautiful cities, where the tourists get out to see the local sights.

Different groups of tourists may have different preferences for the sights they want to see, and thus for the route to be taken from S to F. Therefore, Your Personal Holiday wants to offer its clients a choice from many different routes. As hotels have been booked in advance, the starting city S and the final city F, though, are fixed. Two routes from S to F are considered different if there is at least one road from a city A to a city B which is part of one route, but not of the other route.

There is a restriction on the routes that the tourists may choose from. To leave enough time for the sightseeing at the stops (and to avoid using too much fuel), the bus has to take a short route from S to F. It has to be either a route with minimal distance, or a route which is one distance unit longer than the minimal distance. Indeed, by allowing routes that are one distance unit longer, the tourists may have more choice than by restricting them to exactly the minimal routes. This enhances the impression of a personal holiday.

For example, for the above road map, there are two minimal routes from S = 1 to F = 5: 1 → 2 → 5 and 1 → 3 → 5, both of length 6. There is one route that is one distance unit longer: 1 → 3 → 4 → 5, of length 7.

Now, given a (partial) road map of the Benelux and two cities S and F, tour operator Your Personal Holiday likes to know how many different routes it can offer to its clients, under the above restriction on the route length.

Input

The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:

  • One line with two integers N and M, separated by a single space, with 2 ≤ N ≤ 1,000 and 1 ≤ M ≤ 10, 000: the number of cities and the number of roads in the road map.

  • M lines, each with three integers AB and L, separated by single spaces, with 1 ≤ AB ≤ NA ≠ B and 1 ≤ L ≤ 1,000, describing a road from city A to city B with length L.

    The roads are unidirectional. Hence, if there is a road from A to B, then there is not necessarily also a road from B to A. There may be different roads from a city A to a city B.

  • One line with two integers S and F, separated by a single space, with 1 ≤ SF ≤ N and S ≠ F: the starting city and the final city of the route.

    There will be at least one route from S to F.

Output

For every test case in the input file, the output should contain a single number, on a single line: the number of routes of minimal length or one distance unit longer. Test cases are such, that this number is at most 109 = 1,000,000,000.

Sample Input

2
5 8
1 2 3
1 3 2
1 4 5
2 3 1
2 5 3
3 4 2
3 5 4
4 5 3
1 5
5 6
2 3 1
3 2 1
3 1 10
4 5 2
5 2 7
5 2 7
4 1

Sample Output

3
2

题意:给出一个有向图,起点和终点,然后询问最短路和次短路比最短路大1的总条数;

第一种:dijstra

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include"stdio.h"
#include"string.h"
#include"iostream"
#include"map"
#include"string"
#include"queue"
#include"stdlib.h"
#include"algorithm"
#include"vector"
#include"math.h"
#define M 1009
#define eps 1e-5
#define mod 100000000
#define inf 0x3f3f3f3f
using namespace std;
struct node
{
int v,w;
node(int vv,int ww)
{
v=vv;
w=ww;
}
};
vector<node>edge[M];
int dis[M][],vis[M][],num[M][];
void dij(int s,int t,int n)
{
int i,j;
memset(dis,inf,sizeof(dis));
memset(vis,,sizeof(vis));
dis[s][]=;
num[s][]=num[s][]=;
for(i=;i<=n*;i++)
{
int mini=inf;
int u=-;
int flag;
for(j=;j<=n;j++)
{
if(!vis[j][]&&mini>dis[j][])
{
flag=;
mini=dis[j][];
u=j;
}
else if(!vis[j][]&&mini>dis[j][])
{
flag=;
mini=dis[j][];
u=j;
}
}
if(u==-)break;
vis[u][flag]=;
for(j=;j<(int)edge[u].size();j++)
{
int v=edge[u][j].v;
int w=edge[u][j].w;
if(dis[v][]>mini+w)
{
dis[v][]=dis[v][];
dis[v][]=mini+w;
num[v][]=num[v][];
num[v][]=num[u][flag];
}
else if(dis[v][]==mini+w)
{
num[v][]+=num[u][flag];
}
else if(dis[v][]>mini+w)
{
dis[v][]=mini+w;
num[v][]=num[u][flag];
}
else if(dis[v][]==mini+w)
{
num[v][]+=num[u][flag];
}
}
}
int ans;
if(dis[t][]==dis[t][]+)
ans=num[t][]+num[t][];
else
ans=num[t][];
//printf("%d %d %d %d\n",dis[t][0],dis[t][1],num[t][0],num[t][1]);
printf("%d\n",ans);
}
int main()
{
int T,n,m,i;
cin>>T;
while(T--)
{
scanf("%d%d",&n,&m);
for(i=;i<=n;i++)
edge[i].clear();
for(i=;i<m;i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
edge[u].push_back(node(v,w));
}
int s,t;
scanf("%d%d",&s,&t);
dij(s,t,n);
}
return ;
}

第二种:spfa

#include"stdio.h"
#include"string.h"
#include"queue"
#include"stdlib.h"
#define M 1009
#define inf 0x3f3f3f3f
using namespace std;
struct Gra
{
int u,v,w,next;
}edge[M*];
int t,head[M],dis[M][],num[M][],use[M][];
void init()
{
t=;
memset(head,-,sizeof(head));
}
void add(int u,int v,int w)
{
edge[t].u=u;
edge[t].v=v;
edge[t].w=w;
edge[t].next=head[u];
head[u]=t++;
}
struct node
{
int v,flag,dis;
node(){}
node(int v,int dis,int flag)
{
this->v=v;
this->dis=dis;
this->flag=flag;
}
bool operator<(const node &a)const
{
return dis>a.dis;
}
};
void dij(int s,int n)
{
priority_queue<node>q;
memset(dis,inf,sizeof(dis));
memset(use,,sizeof(use));
dis[s][]=;
num[s][]=;
q.push(node(s,,));
while(!q.empty())
{
node cur=q.top();
int u=cur.v;
int flag=cur.flag;
q.pop();
if(use[u][flag])continue;
use[u][flag]=;
for(int i=head[u];~i;i=edge[i].next)
{
int v=edge[i].v;
if(dis[v][]>dis[u][flag]+edge[i].w)
{
dis[v][]=dis[v][];
dis[v][]=dis[u][flag]+edge[i].w;
num[v][]=num[v][];
num[v][]=num[u][flag];
q.push(node(v,dis[v][],));
q.push(node(v,dis[v][],));
}
else if(dis[v][]==dis[u][flag]+edge[i].w)
{
num[v][]+=num[u][flag];
}
else if(dis[v][]>dis[u][flag]+edge[i].w)
{
dis[v][]=dis[u][flag]+edge[i].w;
num[v][]=num[u][flag];
q.push(node(v,dis[v][],));
}
else if(dis[v][]==dis[u][flag]+edge[i].w)
{
num[v][]+=num[u][flag];
}
}
}
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int n,m;
scanf("%d%d",&n,&m);
init();
for(int i=;i<=m;i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);
}
int ss,tt;
scanf("%d%d",&ss,&tt);
dij(ss,n);
int ans=;
ans+=num[tt][];
if(dis[tt][]+==dis[tt][])
ans+=num[tt][];
printf("%d\n",ans);
}
return ;
}

最短路和次短路的条数(dijstra算法或spfa算法)POJ3463的更多相关文章

  1. Bellman-ford算法、SPFA算法求解最短路模板

    Bellman-ford 算法适用于含有负权边的最短路求解,复杂度是O( VE ),其原理是依次对每条边进行松弛操作,重复这个操作E-1次后则一定得到最短路,如果还能继续松弛,则有负环.这是因为最长的 ...

  2. 图论之最短路算法之SPFA算法

    SPFA(Shortest Path Faster Algorithm)算法,是一种求最短路的算法. SPFA的思路及写法和BFS有相同的地方,我就举一道例题(洛谷--P3371 [模板]单源最短路径 ...

  3. hdu1688(dijkstra求最短路和次短路)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1688 题意:第k短路,这里要求的是第1短路(即最短路),第2短路(即次短路),以及路径条数,最后如果最 ...

  4. HDU 1688 Sightseeing&HDU 3191 How Many Paths Are There(Dijkstra变形求次短路条数)

    Sightseeing Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tota ...

  5. HDU 3416 Marriage Match IV (求最短路的条数,最大流)

    Marriage Match IV 题目链接: http://acm.hust.edu.cn/vjudge/contest/122685#problem/Q Description Do not si ...

  6. HDU 3191 次短路长度和条数

    http://www.cnblogs.com/wally/archive/2013/04/16/3024490.html http://blog.csdn.net/me4546/article/det ...

  7. POJ---3463 Sightseeing 记录最短路和次短路的条数

    Sightseeing Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 9247   Accepted: 3242 Descr ...

  8. HDU3191 【输出次短路条数】

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3191 How Many Paths Are There Time Limit: 2000/1000 M ...

  9. HDU 1688 Sightseeing 【输出最短路+次短路条数】

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1688 题目大意:给n个点,m条有向边.再给出起点s, 终点t.求出s到t的最短路条数+次短路条数. 思 ...

随机推荐

  1. PHP wamp server问题

    只能说各种不顺,天热人烦! 问题一.wampapache服务不能启动之VCRUNTIME140.DLL文件丢失. 这个是缺少VC运行库,查找并安装相应的文件即可. 问题二.wampapche服务不能启 ...

  2. 第三百一十节,Django框架,模板语言

    第三百一十节,Django框架,模板语言 模板语言就是可以将动态数据在html模板渲染的语言 一.接收值渲染 locals()函数,写在请求响应render()函数里,可以将逻辑处理函数里的变量传到h ...

  3. (转)Invalidate、RedrawWindow与UpdateWindow的区别

     一:什么时候才会发生重绘窗口的消息? 当需要更新或重新绘制窗口的外观时,应用程序就会发送WM_PAINT消息.对窗口进行重新绘制. 二:Invalidate() -- RedrawWindow() ...

  4. 10篇写给Git初学者的最佳教程(转)

    身为网页设计师或者网页开发者的你,可能已经听说过Git这个正快速成长的版本控制系统.它由GitHub维护:GitHub是一个开放性的.存储众人代码的网站.如果你想学习如何使用Git,请参考本文.在文章 ...

  5. 转载:pyqt线程间通过 信号/槽 通信

    转自:http://blog.sina.com.cn/s/blog_613d5bb701016qzv.html 信号(singal)与槽(slot)用于对象相互通信,信号:当某个对象的某个事件发生时, ...

  6. 3D游戏与计算机图形学中的数学方法-变换

    1变换 在3D游戏的整个开发过程中,通常需要以某种方式对一系列的向量进行变换.通常用到的变换包括平移,缩放和旋转. 1.1通用变换 通常可将n x n可逆矩阵M看成是一个从坐标系到另一个坐标系的变换矩 ...

  7. 查看 SharePoint 2013 部署到GAC的自定义dll

    在SharePoint 2007和2010中,自定义dll存放在“C:\Windows\assembly\”文件夹中,在Windows资源管理器中可以看到. 但在Sharepoint 2013中,却无 ...

  8. 深入volley(三)自己来写volley

    https://github.com/Smalinuxer/android-SpillOver 这是我自己写的一个请求缓存框架,基于volley的,沿袭了volley的架构与设计思想,而对其进一步的封 ...

  9. Centos下Nagios的安装与配置

    一.Nagios简介 Nagios是一款开源的电脑系统和网络监视工具,能有效监控Windows.Linux和Unix的主机状态,交换机路由器等网络设置,打印机等.在系统或服务状态异常时发出邮件或短信报 ...

  10. iOS实现传递不定长的多个参数

    我们在使用苹果官方的文档的时候会发现可传不定数的参数例如: // [[UIAlertView alloc]initWithTitle:<#(nullable NSString *)#> m ...