最短路和次短路的条数(dijstra算法或spfa算法)POJ3463
http://poj.org/problem?id=3463
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 7252 | Accepted: 2581 |
Description
Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the bus moves from one city S to another city F. On this way, the tourists in the bus can see the sights alongside the route travelled. Moreover, the bus makes a number of stops (zero or more) at some beautiful cities, where the tourists get out to see the local sights.
Different groups of tourists may have different preferences for the sights they want to see, and thus for the route to be taken from S to F. Therefore, Your Personal Holiday wants to offer its clients a choice from many different routes. As hotels have been booked in advance, the starting city S and the final city F, though, are fixed. Two routes from S to F are considered different if there is at least one road from a city A to a city B which is part of one route, but not of the other route.
There is a restriction on the routes that the tourists may choose from. To leave enough time for the sightseeing at the stops (and to avoid using too much fuel), the bus has to take a short route from S to F. It has to be either a route with minimal distance, or a route which is one distance unit longer than the minimal distance. Indeed, by allowing routes that are one distance unit longer, the tourists may have more choice than by restricting them to exactly the minimal routes. This enhances the impression of a personal holiday.
For example, for the above road map, there are two minimal routes from S = 1 to F = 5: 1 → 2 → 5 and 1 → 3 → 5, both of length 6. There is one route that is one distance unit longer: 1 → 3 → 4 → 5, of length 7.
Now, given a (partial) road map of the Benelux and two cities S and F, tour operator Your Personal Holiday likes to know how many different routes it can offer to its clients, under the above restriction on the route length.
Input
The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:
One line with two integers N and M, separated by a single space, with 2 ≤ N ≤ 1,000 and 1 ≤ M ≤ 10, 000: the number of cities and the number of roads in the road map.
M lines, each with three integers A, B and L, separated by single spaces, with 1 ≤ A, B ≤ N, A ≠ B and 1 ≤ L ≤ 1,000, describing a road from city A to city B with length L.
The roads are unidirectional. Hence, if there is a road from A to B, then there is not necessarily also a road from B to A. There may be different roads from a city A to a city B.
One line with two integers S and F, separated by a single space, with 1 ≤ S, F ≤ N and S ≠ F: the starting city and the final city of the route.
There will be at least one route from S to F.
Output
For every test case in the input file, the output should contain a single number, on a single line: the number of routes of minimal length or one distance unit longer. Test cases are such, that this number is at most 109 = 1,000,000,000.
Sample Input
2
5 8
1 2 3
1 3 2
1 4 5
2 3 1
2 5 3
3 4 2
3 5 4
4 5 3
1 5
5 6
2 3 1
3 2 1
3 1 10
4 5 2
5 2 7
5 2 7
4 1
Sample Output
3
2
题意:给出一个有向图,起点和终点,然后询问最短路和次短路比最短路大1的总条数;
第一种:dijstra
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include"stdio.h"
#include"string.h"
#include"iostream"
#include"map"
#include"string"
#include"queue"
#include"stdlib.h"
#include"algorithm"
#include"vector"
#include"math.h"
#define M 1009
#define eps 1e-5
#define mod 100000000
#define inf 0x3f3f3f3f
using namespace std;
struct node
{
int v,w;
node(int vv,int ww)
{
v=vv;
w=ww;
}
};
vector<node>edge[M];
int dis[M][],vis[M][],num[M][];
void dij(int s,int t,int n)
{
int i,j;
memset(dis,inf,sizeof(dis));
memset(vis,,sizeof(vis));
dis[s][]=;
num[s][]=num[s][]=;
for(i=;i<=n*;i++)
{
int mini=inf;
int u=-;
int flag;
for(j=;j<=n;j++)
{
if(!vis[j][]&&mini>dis[j][])
{
flag=;
mini=dis[j][];
u=j;
}
else if(!vis[j][]&&mini>dis[j][])
{
flag=;
mini=dis[j][];
u=j;
}
}
if(u==-)break;
vis[u][flag]=;
for(j=;j<(int)edge[u].size();j++)
{
int v=edge[u][j].v;
int w=edge[u][j].w;
if(dis[v][]>mini+w)
{
dis[v][]=dis[v][];
dis[v][]=mini+w;
num[v][]=num[v][];
num[v][]=num[u][flag];
}
else if(dis[v][]==mini+w)
{
num[v][]+=num[u][flag];
}
else if(dis[v][]>mini+w)
{
dis[v][]=mini+w;
num[v][]=num[u][flag];
}
else if(dis[v][]==mini+w)
{
num[v][]+=num[u][flag];
}
}
}
int ans;
if(dis[t][]==dis[t][]+)
ans=num[t][]+num[t][];
else
ans=num[t][];
//printf("%d %d %d %d\n",dis[t][0],dis[t][1],num[t][0],num[t][1]);
printf("%d\n",ans);
}
int main()
{
int T,n,m,i;
cin>>T;
while(T--)
{
scanf("%d%d",&n,&m);
for(i=;i<=n;i++)
edge[i].clear();
for(i=;i<m;i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
edge[u].push_back(node(v,w));
}
int s,t;
scanf("%d%d",&s,&t);
dij(s,t,n);
}
return ;
}
第二种:spfa
#include"stdio.h"
#include"string.h"
#include"queue"
#include"stdlib.h"
#define M 1009
#define inf 0x3f3f3f3f
using namespace std;
struct Gra
{
int u,v,w,next;
}edge[M*];
int t,head[M],dis[M][],num[M][],use[M][];
void init()
{
t=;
memset(head,-,sizeof(head));
}
void add(int u,int v,int w)
{
edge[t].u=u;
edge[t].v=v;
edge[t].w=w;
edge[t].next=head[u];
head[u]=t++;
}
struct node
{
int v,flag,dis;
node(){}
node(int v,int dis,int flag)
{
this->v=v;
this->dis=dis;
this->flag=flag;
}
bool operator<(const node &a)const
{
return dis>a.dis;
}
};
void dij(int s,int n)
{
priority_queue<node>q;
memset(dis,inf,sizeof(dis));
memset(use,,sizeof(use));
dis[s][]=;
num[s][]=;
q.push(node(s,,));
while(!q.empty())
{
node cur=q.top();
int u=cur.v;
int flag=cur.flag;
q.pop();
if(use[u][flag])continue;
use[u][flag]=;
for(int i=head[u];~i;i=edge[i].next)
{
int v=edge[i].v;
if(dis[v][]>dis[u][flag]+edge[i].w)
{
dis[v][]=dis[v][];
dis[v][]=dis[u][flag]+edge[i].w;
num[v][]=num[v][];
num[v][]=num[u][flag];
q.push(node(v,dis[v][],));
q.push(node(v,dis[v][],));
}
else if(dis[v][]==dis[u][flag]+edge[i].w)
{
num[v][]+=num[u][flag];
}
else if(dis[v][]>dis[u][flag]+edge[i].w)
{
dis[v][]=dis[u][flag]+edge[i].w;
num[v][]=num[u][flag];
q.push(node(v,dis[v][],));
}
else if(dis[v][]==dis[u][flag]+edge[i].w)
{
num[v][]+=num[u][flag];
}
}
}
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int n,m;
scanf("%d%d",&n,&m);
init();
for(int i=;i<=m;i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);
}
int ss,tt;
scanf("%d%d",&ss,&tt);
dij(ss,n);
int ans=;
ans+=num[tt][];
if(dis[tt][]+==dis[tt][])
ans+=num[tt][];
printf("%d\n",ans);
}
return ;
}
最短路和次短路的条数(dijstra算法或spfa算法)POJ3463的更多相关文章
- Bellman-ford算法、SPFA算法求解最短路模板
Bellman-ford 算法适用于含有负权边的最短路求解,复杂度是O( VE ),其原理是依次对每条边进行松弛操作,重复这个操作E-1次后则一定得到最短路,如果还能继续松弛,则有负环.这是因为最长的 ...
- 图论之最短路算法之SPFA算法
SPFA(Shortest Path Faster Algorithm)算法,是一种求最短路的算法. SPFA的思路及写法和BFS有相同的地方,我就举一道例题(洛谷--P3371 [模板]单源最短路径 ...
- hdu1688(dijkstra求最短路和次短路)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1688 题意:第k短路,这里要求的是第1短路(即最短路),第2短路(即次短路),以及路径条数,最后如果最 ...
- HDU 1688 Sightseeing&HDU 3191 How Many Paths Are There(Dijkstra变形求次短路条数)
Sightseeing Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tota ...
- HDU 3416 Marriage Match IV (求最短路的条数,最大流)
Marriage Match IV 题目链接: http://acm.hust.edu.cn/vjudge/contest/122685#problem/Q Description Do not si ...
- HDU 3191 次短路长度和条数
http://www.cnblogs.com/wally/archive/2013/04/16/3024490.html http://blog.csdn.net/me4546/article/det ...
- POJ---3463 Sightseeing 记录最短路和次短路的条数
Sightseeing Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9247 Accepted: 3242 Descr ...
- HDU3191 【输出次短路条数】
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3191 How Many Paths Are There Time Limit: 2000/1000 M ...
- HDU 1688 Sightseeing 【输出最短路+次短路条数】
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1688 题目大意:给n个点,m条有向边.再给出起点s, 终点t.求出s到t的最短路条数+次短路条数. 思 ...
随机推荐
- Jquery easyui教程
目 录 1基本拖放.......................................................................................... ...
- r画饼图
原始图样: library(ggplot2) dt = data.frame(A = c(2, 7, 4, 10, 1), B = c('B','A','C','D','E')) p = ggplot ...
- 【转】苹果App Store新规:6月1日后所有应用必须支持IPv6-only网络
在WWDC2015上苹果宣布iOS9将支持纯IPv6的网络服务.2016年初开始所有提交到App Store的应用必须支持IPv6.为确保现有的应用是兼容的,我们需要注意下面几点. 不建议使用底层的网 ...
- [JS] selector 背景选择器
用于listview和button改变android原来控件的背景 android的selector是在drawable/xxx.xml中配置的 1.定义xml 把下面的XML文件保存成你自己命名的. ...
- error: expected declaration specifiers or '...' before 'xxxx'(xxxx是函数形参)
今天汗颜了一大阵 早上,在编译我的源代码的时候竟然不通过编译,上个星期六也出现了这种情况,当时不知道怎么弄的后来又通过编译了,可能是原来的.o文件没有make clean 还保存在那里,以至于蒙过去了 ...
- linux -- gedit快捷键
Shortcuts for tabs:Ctrl + Alt + PageDown Switches to the next tab to the left.Ctrl + Alt + PageD ...
- MySQL无法远程连接解决方案
1.查看/etc/mysql/my.cnf配置文件是否只允许本地连接 注释配置:#bind-address = 127.0.0.1,重启MySQL Server 2.防火墙(我用的是iptables) ...
- 送给半路出家的Pythoner
伯乐在线Python专区: http://python.jobbole.com/category/python/ 我希望初学Python时就能知道的一些用法: http://python.jobbol ...
- socket client简单传输数据
1.整数转换为用于TCP传输的二进制 _host = "127.0.0.1" _port = 5678 _address = (_host, _port) s=socket.soc ...
- MultiplyVector方法
该方法的功能是用来对方向向量v进行矩阵变换,当矩阵与v进行变换时,只是对v的方向进行转换.那么系统就会对参与变换的Matrix4x4矩阵M进行特殊处理. 例如:经过系统处理后就变为 其中n002 + ...