B-spline Curves 学习之B样条曲线的系数计算与B样条曲线特例(6)
B-spline Curves: Computing the Coefficients
本博客转自前人的博客的翻译版本,前几章节是原来博主的翻译内容,但是后续章节博主不在提供翻译,后续章节我在完成相关的翻译学习。
(原来博客网址:http://blog.csdn.net/tuqu/article/details/4749586)
原来的博主翻译还是很好的,所以前几章节直接借鉴参考原博主的内容。
尽管de Boor算法是一个计算对应于给定u的B-样条曲线上的点的标准方法, 我们许多情况下(例如,曲线插值和逼近)真正需要的是这些系数。我们将阐述一个简单方法来做这个。
给定一个由 n+1个控制点P0, P1, ..., Pn, 和 m+1个节点 u0=u1=...=up=0, up+1, up+2, ..., um-p-1, um-p=um-p+1=...= um=1定义的p 次clamped B-样条曲线。对于任何给定在[0,1]上的 u ,我们想计算系数N0,p(u), N1,p(u), ..., Nn,p(u) 。一个简单方法是使用下列递推关系:
但是这是一个非常耗时的过程。为了计算 Ni,p(u), 我们需要计算 Ni,p-1(u)和Ni+1,p-1(u). 为了计算Ni,p-1(u), 我们需要计算Ni,p-2(u) 和 Ni+1,p-2(u). 为了计算Ni+1,p-1(u), 我们需要Ni+1,p-2(u)和 Ni+2,p-2(u). 如你们所看到的, Ni+1,p-2(u)出现了两次,因此,递归计算会重复。当递归继续深入,会出现更多的重复计算。这与在前页讨论的de Casteljau算法的递归版本很相似。因此,计算速度非常慢。
有容易的方法。设 u 在节点区间[uk,uk+1)上。. B-样条基函数的重要性质 说明最多 p+1个p 次基函数在[uk,uk+1)上非零,即: Nk-p,p(u), Nk-p+1,p(u), Nk-p+2,p(u), ..., Nk-1,p(u), Nk,p(u)。通过定义,在 [uk,uk+1)上的0次仅有的非零基函数是Nk,0(u)。结果,从.Nk,0(u)出发计算系数是以一个 "fan-out" 三角形式,如下图所示:
因为在 [uk,uk+1)上 Nk,0(u) = 1而其他0次B-样条基函数在[uk,uk+1)上是零,我们可以从 Nk,0(u)开始而计算1次基函数 Nk-1,1(u) 和 Nk,1(u)。从这两个值,我们可以计算2次基函数 Nk-2,2(u), Nk-1,2(u) 和Nk,2(u)。这个过程重复直到所有p+1 个非零系数计算出来。
在这个计算中, “内部”值如 Nk-1,2(u)有一个西北向前驱 (即, Nk-1,1(u))和一个西南向的前驱 (即, Nk,1(u));上述三角如Nk-1,1(u)的东北方向边界上的值只有一个西南向前驱 (即, Nk,0(u));这个三角如 Nk,2(u)的东南方向边界上的值只有一个西北前驱 (即, Nk,1(u))。因此, 在东北 (resp., 东南)方向边界上的值使用定义中的递归关系的第二 (resp., 第一)项 。只有内部值使用全部两项。基于这个观察,我们有下列算法:
上述算法不是很有效的算法。它的目的是为了以一个直觉容易理解的方式说明思想。 数组N[ ] 保存所有中间值和最后结果。对一个次数 d, N[i] 保存了Ni,d(u)的值,且,最后,N[k-d], N[k-d+1], ..., N[k] 含有非零系数。计算以 d=1开始因为我们知道仅有的非零基函数是 Nk,0(u)如果 u 在节点区间 [uk,uk+1)上。 外循环使得次数 d 从 1到 p。 begin 后面的第一次赋值是仅使用一项(即,三角中的西南项, Nk-d+1,d-1(u)),计算 Nk-d,d(u) , 内部 for 循环计算 “内部”项,而外循环中最后一个语句仅使用一项(即,三角中的西北项, Nk,d-1(u)) 计算 Nk,d(u)。
你能使这个算法更有效吗?
B-spline Curves: A Special Case
B-样条曲线:特例
如果我们有 2n+2 个节点 u0 = u1 = ... = un = 0及 un+1 = un+2 = ... = u2n+1 = 1 (即,头 n+1 个是零,而后 n+1是1), n 次B-样条基函数是什么?
因为每个 u 在 [0,1] = [un, un+1]上, n 次非零基函数是: N0,n(u), N1,n(u), ..., Nn,n(u)。回忆B-样条基函数的定义如下:
因为仅有的 0次非零基函数是Nn,0(u),下标 i 只能在0 和n之间。因此, ui是零而 ui+n和ui+n+1是1。结果,上边第二个等式可重写为如下式:
如果我们进行如前页讨论的那样以一个三角形式计算N0,n(u), N1,n(u), ..., Nn,n(u) ,那么我们有下图。在该图中,每个东北(resp., 东南)边界箭头意味这乘1-u (resp., u)到在箭头尾部的项上。注意计算中有n 步骤,每步获得每列。因此, Nn,0(u) 对 N0,n(u)的贡献是 (1-u)n, 而Nn,0(u)的贡献对Nn,n(u)是un.
现在,考虑一般项 Ni,n(u)的计算。 Nn,0(u) 对Ni,n(u)计算的贡献可用"path-counting"技术确定,其用来展示de Casteljau算法的正确 以及贝塞尔曲线的更高次导数的计算中。每个从 Nn,0(u) 到 Ni,n(u) 遇n 箭头其中i 是东南边界 而 n-i 是东北边界。 那些东北(resp., 东南)边界箭头意味着对尾部的项乘以1-u (resp., u)。因此,Nn,0(u) 对 Ni,n(u)的贡献沿着一个单path是 ui(1-u)n-i 。从 Nn,0(u) 到 Ni,n(u)的paths总数是C(n,i)。更准确地,paths的数目等于放置 i 个东南边界箭头在n 个位置不同方法的数目。剩余 n-i 位置用东北边界箭头充满。这 n 个箭头准确地描述了从 Nn,0(u) 到 Ni,n(u)的一个单路径(path)。因为每个路径(path)贡献 ui(1-u)n-i 给计算且因为有C(n,i) 个路径,Nn,0(u) 对 Ni,n(u)的总贡献是
这就是 n次第i个贝塞尔基函数。因此,我们有下列结论:
B-spline Curves 学习之B样条曲线的系数计算与B样条曲线特例(6)的更多相关文章
- B-spline Curves 学习前言与动机(1)
B-spline Curves 学习之前言 本博客转自前人的博客的翻译版本,前几章节是原来博主的翻译内容,但是后续章节博主不在提供翻译,后续章节我在完成相关的翻译学习. (原来博客网址:http:// ...
- ArcGIS案例学习笔记4_2_城乡规划容积率计算和建筑景观三维动画
ArcGIS案例学习笔记4_2_城乡规划容积率计算和建筑景观三维动画 概述 计划时间:第4天下午 目的:城市规划容积率计算和建筑三维景观动画 教程: pdf page578 数据:实验数据\Chp13 ...
- [源码解析] 深度学习流水线并行 GPipe(3) ----重计算
[源码解析] 深度学习流水线并行 GPipe(3) ----重计算 目录 [源码解析] 深度学习流水线并行 GPipe(3) ----重计算 0x00 摘要 0x01 概述 1.1 前文回顾 1.2 ...
- B-spline Curves 学习之B样条曲线性质(5)
B-spline Curves: Important Properties 本博客转自前人的博客的翻译版本,前几章节是原来博主的翻译内容,但是后续章节博主不在提供翻译,后续章节我在完成相关的翻译学习. ...
- B-spline Curves 学习之B样条曲线的移动控制点、修改节点分析(7)
B-spline Curves: Moving Control Points 本博客转自前人的博客的翻译版本,前几章节是原来博主的翻译内容,但是后续章节博主不在提供翻译,后续章节我在完成相关的翻译学习 ...
- B-spline Curves 学习之B样条曲线定义(4)
B-spline Curves: Definition 本博客转自前人的博客的翻译版本,前几章节是原来博主的翻译内容,但是后续章节博主不在提供翻译,后续章节我在完成相关的翻译学习. (原来博客网址:h ...
- B-spline Curves 学习之B样条曲线的导数(8)
Derivatives of a B-spline Curve 本博客转自前人的博客的翻译版本,前几章节是原来博主的翻译内容,但是后续章节博主不在提供翻译,后续章节我在完成相关的翻译学习. (原来博客 ...
- cad.net 依照旧样条曲线数据生成一条新样条曲线的代码段. spline生成
Spline spl = entity as Spline; //拿到旧的spline图元... //样条曲线生成条件 var controlPoints = new Point3dCollectio ...
- B-spline Curves 学习之B样条基函数的定义与性质(2)
B-spline Basis Functions 本博客转自前人的博客的翻译版本,前几章节是原来博主的翻译内容,但是后续章节博主不在提供翻译,后续章节我在完成相关的翻译学习. (原来博客网址:http ...
随机推荐
- C# 如何捕获一个USB设备发送到PC的数据
using System;using System.Collections.Generic;using System.ComponentModel;using System.Data;using Sy ...
- JVM体系结构之三:方法区之2(jdk1.6,jdk1.7,jdk1.8下的方法区变迁)
方法区 方法区存储虚拟机加载的类信息,常量,静态变量,即时编译器编译后的代码等数据.HotSpot中也称为永久代(Permanent Generation),(存储的是除了Java应用程序创建的对象之 ...
- PAT 甲级 1010 Radix (25)(25 分)进制匹配(听说要用二分,历经坎坷,终于AC)
1010 Radix (25)(25 分) Given a pair of positive integers, for example, 6 and 110, can this equation 6 ...
- C++客户端通过gSOAP调用WebService
webService三要素: SOAP(Simple Object Access Protocol).WSDL(WebServicesDescriptionLanguage).UDDI(Univers ...
- java版本特性总结
学java这么久,对其每个版本的特性不是怎么了解,今天总结一下. 1.4: java NIO,基于多路复用技术(基于IO) 1.5 枚举.foreach.static导入 范型(重要) 注解(配置文件 ...
- JMS消息服务模型
JMS--仅仅是一种规范,一种接口规约,一种编程模型.类似的JPA,JSR等 场景: 1.多个系统之间交互,实现可以采取RPC,但是交互复杂,基本就是点对点的方式 2.其实交互就是消息,而JMS就是消 ...
- springcloud(八) Hystrix监控
一.Feign项目Hystrix自带的监控 在feign项目pom.xml 添加: <!-- 1,使用 Hystrix的模块 hystrix-metrics-event-stream,就可将这些 ...
- django-csrf_exempt
from django.views.decorators.csrf import csrf_exempt @csrf_exempt # 前端ajax请求时需要验证,否则403def fun(reque ...
- C++Builder STL 泛型
STL(Standard Template Library)标准模板库, 包括了算法,容器,迭代器.就是泛型. 向量(vector) 连续存储的元素<vector>列表(list) 由节点 ...
- LUA表的引用理解
--lua中引用类型都是分配在堆上的 --因此,我们在使用LUA的table时,可尽可能的使用表的引用,而不需要拷贝表里的元素 --比如,通过RPC协议传来一个表A,我们想要缓存这个表,只需要保存该表 ...