[LuoguP1034][Noip2002] 矩形覆盖
[LuoguP1034][Noip2002] 矩形覆盖(Link)
在平面上有\(N\)个点,\(N\)不超过五十, 要求将这\(N\)个点用\(K\)个矩形覆盖,\(k\)不超过\(4\),要求最小化矩形之和。
其实这个题应该是十分的简单,因为2002年蓝题的难度可想而知,一般都是思路简单码量大的题。这个题思路也就是十分暴力的枚举每一个点所属的矩阵的编号,然后题目要求所有的矩形不能重叠,于是就有了一个\(Judge\)函数,最后最小化矩形面积和就可以了。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std ;
typedef long long LL ;
const int MAXN = 51 ;
const int MAXM = 51 ;
const int Inf = 1e6 ;
int N, K, Ans = Inf, P ;
struct NODE {int X, Y ;} E[MAXN] ;
struct SQUR {int X[MAXN][3], Y[MAXN][3], V[MAXN] ; } Sq[5] ;
inline int maxx(int pos,int cos){if(pos>cos)return pos;else return cos;}
inline int minn(int pos,int cos){if(pos>cos)return cos;else return pos;}
inline int Read() {
int X = 0, F = 1 ; char ch = getchar() ;
while (ch > '9' || ch < '0') F = (ch == '-' ? - 1 : 1), ch = getchar() ;
while (ch >= '0' && ch <= '9') X=(X<<1)+(X<<3)+(ch^48), ch = getchar() ;
return X * F ;
}
inline int Judge(int Now, int To) {
int X[3], Y[3] ; X[1] = Y[1] = Inf, X[2] = Y[2] = - Inf ;
X[1] = min(Sq[To].X[Now - 1][1], E[Now].X) ;
X[2] = max(Sq[To].X[Now - 1][2], E[Now].X) ;
Y[1] = min(Sq[To].Y[Now - 1][1], E[Now].Y) ;
Y[2] = max(Sq[To].Y[Now - 1][2], E[Now].Y) ;
for (int i = 1 ; i <= K ; i ++) if (i != To) {
for (int k = 1 ; k <= 2 ; k ++) {
Sq[i].X[Now][k] = Sq[i].X[Now - 1][k] ;
Sq[i].Y[Now][k] = Sq[i].Y[Now - 1][k] ;
Sq[i].V[Now] = Sq[i].V[Now - 1] ;
for (int j = 1 ; j <= 2 ; j ++) {
if (Sq[i].X[Now - 1][1] <= X[k] && Sq[i].X[Now - 1][2] >= X[k])
if (Sq[i].Y[Now - 1][1] <= Y[j] && Sq[i].Y[Now - 1][2] >= Y[j])
return Inf ;
}
}
}
Sq[To].X[Now][1] = X[1] ; Sq[To].X[Now][2] = X[2] ;
Sq[To].Y[Now][1] = Y[1] ; Sq[To].Y[Now][2] = Y[2] ;
Sq[To].V[Now] = (X[2] - X[1]) * (Y[2] - Y[1]) ;
return P = Sq[To].V[Now] - Sq[To].V[Now - 1] ;
}
inline void Dfs(int Now, int Sum) {
if (Now == N + 1)
Ans = Sum ;
else for (int i = 1 ; i <= K ; i ++)
if (Sum + Judge(Now, i) < Ans)
Dfs(Now + 1, Sum + P) ;
}
int main() {
N = Read(), K = Read() ;
for (int i = 1 ; i <= N ; i ++) E[i].X = Read(), E[i].Y = Read() ;
for (int i = 1 ; i <= 4 ; i ++)
Sq[i].X[0][1] = Sq[i].Y[0][1] = Inf,
Sq[i].X[0][2] = Sq[i].Y[0][2] = - Inf ;
Dfs(1, 0) ;
printf("%d", Ans) ;
return 0 ;
}
[LuoguP1034][Noip2002] 矩形覆盖的更多相关文章
- NOIP2002矩形覆盖[几何DFS]
题目描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7),见图一. 这 ...
- NOIP2002 矩形覆盖
题四 矩形覆盖(存盘名NOIPG4) [问题描述]: 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2), ...
- 洛谷1034 NOIP2002 矩形覆盖
问题描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7). 这些点可以 ...
- COGS103&tyvj1899 [NOIP2002]矩形覆盖
题目里给的范围是k<=4,但是官方数据并没有k==4的情况,导致一些奇奇怪怪的DP写法也能过.听说标程在k==4的时候有反例,掀桌-.. 难怪COGS上k==4的数据答案是错的. 还是好好写个搜 ...
- luoguP1034 矩形覆盖 x
P1034 矩形覆盖 题目描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4( ...
- 【OpenJudge 1793】矩形覆盖
http://noi.openjudge.cn/ch0405/1793/ 好虐的一道题啊. 看数据范围,一眼状压,然后调了好长时间QwQ 很容易想到覆盖的点数作为状态,我用状态i表示至少覆盖状态i表示 ...
- bzoj 1185 旋转卡壳 最小矩形覆盖
题目大意 就是求一个最小矩形覆盖,逆时针输出其上面的点 这里可以看出,那个最小的矩形覆盖必然有一条边经过其中凸包上的两个点,另外三条边必然至少经过其中一个点,而这样的每一个点逆时针走一遍都满足单调性 ...
- [剑指OFFER] 斐波那契数列- 跳台阶 变态跳台阶 矩形覆盖
跳台阶 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. class Solution { public: int jumpFloor(int number) ...
- UVA-11983-Weird Advertisement(线段树+扫描线)[求矩形覆盖K次以上的面积]
题意: 求矩形覆盖K次以上的面积 分析: k很小,可以开K颗线段树,用sum[rt][i]来保存覆盖i次的区间和,K次以上全算K次 // File Name: 11983.cpp // Author: ...
随机推荐
- Fill Table Row(it’s an IQ test question)
Here is a table include the 2 rows. And the cells in the first row have been filled with 0~4. Now yo ...
- Q:关于栈的常见问题
对于栈,一个常见的问题是:给定一个序列a0,a1,a2,a3...an依次顺序入栈,在元素顺序入栈的过程中,栈中任意一个元素可以选择是否出栈,则其共有几种出栈的可能,给定的出栈序列中,哪种是不可能的 ...
- Oracle数据库基本操作 (六) —— 数据的导出与导入
一.cmd 下登录oracle数据库下的指定用户 方式一:命令行明文连接登录 打开cmd,输入:sqlplus/nolog 输入:conn username/passworld@数据库实例名 方式二: ...
- select实现三级联动
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...
- 在 Ubuntu上使用 MySQL
MySQL 安装配置 https://help.ubuntu.com/12.04/serverguide/mysql.html MySQL Manual http://dev.mysql.com/do ...
- UOJ#414. 【APIO2018】新家
传送门 首先二分答案 \(mid\),问题变成求区间 \([l-mid,r+mid]\) 在该年份的不同类型个数为 \(k\) 关于年份的限制可以离线下来 现在的问题就是区间数颜色,一个套路就是维护每 ...
- Bootstrap Modal多个弹出层顺序
Bootstrap Modal多个弹出层顺序与div的顺序关联.后来者居上:即div靠后的modal层弹出的时候会在上层. 比如上图所示,模态框2弹出的时候会在模态框1上面.
- 关于js的两个函数
注:这两个函数结合其他主要实现异步的默认checkbox选中和其他选中,从php页面穿过来已经选中的值,用jQuery 回绑:关键点在于$.each(),遍历,再用$.attr() 回绑:第二步关键点 ...
- Linux Notes
Do what we want based on what others already did with additional abstraction and organization to ser ...
- 如何让转换的视频支持HTML5在线播放
转换工具当然是ffmpeg了,那么如何让转换后的视频支持所有支持HTML5的浏览器在线播放?只需要如下命令行代码就行了: ffmpeg -i output.mpg -vcodec libx264 -a ...