题目描述

给出 NNN 个点, MMM 条边的有向图,对于每个点 vvv ,求 A(v)A(v)A(v) 表示从点 vvv 出发,能到达的编号最大的点。

输入输出格式

输入格式:

第1 行,2 个整数 N,MN,MN,M 。

接下来 MMM 行,每行2个整数 Ui,ViU_i,V_iUi​,Vi​ ,表示边 (Ui,Vi)(U_i,V_i)(Ui​,Vi​) 。点用 1,2,⋯,N1, 2,\cdots,N1,2,⋯,N 编号。

输出格式:

N 个整数 A(1),A(2),⋯,A(N)A(1),A(2),\cdots,A(N)A(1),A(2),⋯,A(N) 。

输入输出样例

输入样例#1:

  1. 4 3
  2. 1 2
  3. 2 4
  4. 4 3
输出样例#1:

  1. 4 4 3 4

说明

• 对于60% 的数据, 1≤N.K≤1031 \le N . K \le 10^31≤N.K≤103 ;

• 对于100% 的数据, 1≤N,M≤1051 \le N , M \le 10^51≤N,M≤105 。

Solution:

  本题tarjan缩点+拓扑序dp(貌似大多数人直接dfs就过了?)。

  首先缩点,处理出每个连通分量并记录连通分量上的最大点值,然后重新建图得到一个DAG,这样就能愉快地跑一个简单的拓扑序dp出解了。

代码:

  1. /*Code by 520 -- 8.21*/
  2. #include<bits/stdc++.h>
  3. #define il inline
  4. #define ll long long
  5. #define RE register
  6. #define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
  7. #define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
  8. using namespace std;
  9. const int N=2e5+;
  10. struct node{
  11. int u,v;
  12. }e[N];
  13. int n,m,tot,dfn[N],low[N];
  14. int to[N],net[N],h[N],cnt;
  15. int stk[N],top;
  16. int f[N],ans;
  17. int scc,bl[N],val[N],rd[N];
  18. bool ins[N];
  19.  
  20. int gi(){
  21. int a=;char x=getchar();
  22. while(x<''||x>'')x=getchar();
  23. while(x>=''&&x<='')a=(a<<)+(a<<)+(x^),x=getchar();
  24. return a;
  25. }
  26.  
  27. il void add(int u,int v){to[++cnt]=v,net[cnt]=h[u],h[u]=cnt;}
  28.  
  29. void tarjan(int u){
  30. dfn[u]=low[u]=++tot,stk[++top]=u,ins[u]=;
  31. for(RE int i=h[u];i;i=net[i]){
  32. int v=to[i];
  33. if(!dfn[v]) tarjan(v),low[u]=min(low[u],low[v]);
  34. else if(ins[v]) low[u]=min(low[u],dfn[v]);
  35. }
  36. if(dfn[u]==low[u]){
  37. scc++;
  38. while(stk[top+]!=u)
  39. bl[stk[top]]=scc,val[scc]=max(val[scc],stk[top]),ins[stk[top--]]=;
  40. }
  41. }
  42.  
  43. queue<int>q;
  44. il void init(){
  45. n=gi(),m=gi();
  46. For(i,,m) e[i].u=gi(),e[i].v=gi(),add(e[i].u,e[i].v);
  47. For(i,,n) if(!dfn[i]) tarjan(i);
  48. memset(h,,sizeof(h)),cnt=;
  49. For(i,,m) if(bl[e[i].u]!=bl[e[i].v]) add(bl[e[i].v],bl[e[i].u]),rd[bl[e[i].u]]++;
  50. For(i,,scc) if(!rd[i]) q.push(i),f[i]=val[i];
  51. while(!q.empty()){
  52. int u=q.front();q.pop();
  53. for(RE int i=h[u];i;i=net[i]){
  54. f[to[i]]=max(f[to[i]],max(f[u],val[to[i]]));
  55. if(!(--rd[to[i]])) q.push(to[i]);
  56. }
  57. }
  58. For(i,,n) printf("%d ",f[bl[i]]);
  59. }
  60.  
  61. int main(){
  62. init();
  63. return ;
  64. }

P3916 图的遍历的更多相关文章

  1. luogu P3916 图的遍历

    P3916 图的遍历 题目描述 给出 N 个点, M 条边的有向图,对于每个点 v ,求 A(v) 表示从点 v 出发,能到达的编号最大的点. 输入输出格式 输入格式: 第1 行,2 个整数 N,MN ...

  2. Java实现 洛谷 P3916 图的遍历(反向DFS+记忆化搜索)

    P3916 图的遍历 输入输出样例 输入 4 3 1 2 2 4 4 3 输出 4 4 3 4 import java.io.BufferedReader; import java.io.IOExce ...

  3. 洛谷P3916 图的遍历 [图论,搜索]

    题目传送门 图的遍历 题目描述 给出 N 个点, M条边的有向图,对于每个点 v ,求 A(v) 表示从点 v 出发,能到达的编号最大的点. 输入输出格式 输入格式: 第1 行,2 个整数 N,M . ...

  4. P3916 图的遍历 题解

    原题链接 简要题意: 求从每个点开始,可以到达的编号最大的点. 我们只要发现一条性质,这题就变得挺简单了. 你想,如果从每个点开始走,分别遍历,肯定是不科学的. 因为是有向图,所以当前点 \(x\) ...

  5. 洛谷P3916||图的遍历||反向建图||链式前向星||dfs

    题目描述 给出 NN 个点, MM 条边的有向图,对于每个点 vv ,求 A(v)A(v) 表示从点 vv 出发,能到达的编号最大的点. 解题思路 看起来很简单的一道题, 但我依然调了一天,我还是太菜 ...

  6. Luogu P3916 图的遍历 【优雅的dfs】【内有待填坑】By cellur925

    说明 • 对于60% 的数据, n,m在1e3内 • 对于100% 的数据, n,m在1e5内. 本弱弱上来就是一顿暴搜打,dfs n次,每次更新答案,复杂度为O(n*n),果然TLE,60分抱回家. ...

  7. 洛谷p3916图的遍历题解

    题面 思路: 反向建边,dfs艹咋想出来的啊 倒着遍历,如果你现在遍历到的这个点已经被标记了祖先是谁了 那么就continue掉 因为如果被标记了就说明前面已经遍历过了 而我们的顺序倒着来的 前边的一 ...

  8. 洛谷P3916 图的遍历

    题目链接:https://www.luogu.org/problemnew/show/P3916 题目大意 略. 分析 以终为始,逆向思维. 代码如下 #include <bits/stdc++ ...

  9. 图的遍历(搜索)算法(深度优先算法DFS和广度优先算法BFS)

    图的遍历的定义: 从图的某个顶点出发访问遍图中所有顶点,且每个顶点仅被访问一次.(连通图与非连通图) 深度优先遍历(DFS): 1.访问指定的起始顶点: 2.若当前访问的顶点的邻接顶点有未被访问的,则 ...

随机推荐

  1. ELKStack入门篇(二)之Nginx、Tomcat、Java日志收集以及TCP收集日志使用

    1.收集Nginx的json格式日志 1.1.Nginx安装 [root@linux-node1 ~]# yum install nginx -y [root@linux-node1 ~]# vim ...

  2. Karma与TSLint

    TSLint TSLint是一个可扩展的静态分析工具,用于检查TypeScript代码的可读性,可维护性和功能性错误.收到现代编辑和构建系统的广泛支持,并且可以使用您自己的路由,配置和格式化. 安装 ...

  3. Python爬虫与反爬虫(7)

    [Python基础知识]Python爬虫与反爬虫(7) 很久没有补爬虫了,相信在白蚁二周年庆的活动大厅比赛中遇到了关于反爬虫的问题吧 这节我会做个基本分享. 从功能上来讲,爬虫一般分为数据采集,处理, ...

  4. selenium webdriver API详解(三)

    本系列主要讲解webdriver常用的API使用方法(注意:使用前请确认环境是否安装成功,浏览器驱动是否与谷歌浏览器版本对应) 一:获取页面元素的文本内容:text 例:获取我的博客名字文本内容 代码 ...

  5. Vue.js项目中,当图片无法显示时则显示默认图片

    使用require将图片进入,写法如下: data: () => ({logo: 'this.src="' + require('../assets/img.png') + '&quo ...

  6. access数据库频繁读取操作会出现 System.Data.OleDb.OleDbException 的异常解决

    asp.net access数据库 本来想着打开一个access数据库连接后,不关闭,下次操作数据了,直接拿来用,谁知道连着测试64次后(大概这么多次),就会出现System.Data.OleDb.O ...

  7. Javascript中Generator(生成器)

    阅读目录 Generator的使用: yield yield* next()方法 next()方法的参数 throw方法() return()方法: Generator中的this和他的原型 实际使用 ...

  8. Python 代码调试技巧

    使用 pdb 进行调试 pdb 是 python 自带的一个包,为 python 程序提供了一种交互的源代码调试功能,主要特性包括设置断点.单步调试.进入函数调试.查看当前代码.查看栈片段.动态改变变 ...

  9. ES6的新特性(3)——变量的解构赋值

    变量的解构赋值 数组的解构赋值 基本用法 ES6 允许按照一定模式,从数组和对象中提取值,对变量进行赋值,这被称为解构(Destructuring). let a = 1; let b = 2; le ...

  10. ECharts之force力导向布局图——数据源说明及后端API约定

    Echarts ? 关于 Echarts 请移步这里 force 力导向图 实现方式,如: function require_EC () { require( [ 'echarts', //载入for ...