BZOJ4892 Tjoi2017dna(后缀数组)
对每个子串暴力匹配至失配三次即可。可以用SA查lcp。然而在bzoj上被卡常了。当然也可以二分+哈希或者SAM甚至FFT。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 200010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int T,n,m,sa[N],sa2[N],rk[N<<],tmp[N<<],lg2[N],cnt[N],h[N],f[N][];
char s[N],s2[N];
void make(int n)
{
memset(cnt,,sizeof(cnt));
int m=;
for (int i=;i<=n;i++) cnt[rk[i]=s[i]]++,m=max(m,(int)s[i]);
for (int i=;i<=m;i++) cnt[i]+=cnt[i-];
for (int i=n;i>=;i--) sa[cnt[rk[i]]--]=i;
for (int k=;k<=n;k<<=)
{
int p=;
for (int i=n-k+;i<=n;i++) sa2[++p]=i;
for (int i=;i<=n;i++) if (sa[i]>k) sa2[++p]=sa[i]-k;
memset(cnt,,m+<<);
for (int i=;i<=n;i++) cnt[rk[i]]++;
for (int i=;i<=m;i++) cnt[i]+=cnt[i-];
for (int i=n;i>=;i--) sa[cnt[rk[sa2[i]]]--]=sa2[i];
memcpy(tmp,rk,sizeof(rk));
p=;rk[sa[]]=;
for (int i=;i<=n;i++)
{
if (tmp[sa[i]]!=tmp[sa[i-]]||tmp[sa[i]+k]!=tmp[sa[i-]+k]) p++;
rk[sa[i]]=p;
}
if (p==n) break;
m=p;
}
for (int i=;i<=n;i++)
{
h[i]=max(h[i-]-,);
while (s[i+h[i]]==s[sa[rk[i]-]+h[i]]) h[i]++;
}
for (int i=;i<=n;i++) f[i][]=h[sa[i]];
for (int j=;j<;j++)
for (int i=;i<=n;i++)
f[i][j]=min(f[i][j-],f[min(i+(<<j-),n)][j-]);
lg2[]=;
for (int i=;i<=n;i++)
{
lg2[i]=lg2[i-];
if ((<<lg2[i])<=i) lg2[i]++;
}
}
int query(int x,int y)
{
x=rk[x],y=rk[y];
if (x==y) return N;
if (x>y) swap(x,y);x++;
return min(f[x][lg2[y-x+]],f[y-(<<lg2[y-x+])+][lg2[y-x+]]);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4892.in","r",stdin);
freopen("bzoj4892.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
T=read();
while (T--)
{
scanf("%s",s+);n=strlen(s+);
scanf("%s",s2+);m=strlen(s2+);
for (int i=;i<=m;i++) s[n+i]=s2[i];
make(n+m);
int ans=;
for (int i=;i<=n-m+;i++)
{
int x=i;
for (int j=;j<=&&x-i+<=m;j++)
{
x+=query(x,n+x-i+);
x++;
}
if (x-i+<=m) x+=query(x,n+x-i+);
if (x-i+>m) ans++;
}
cout<<ans<<endl;
}
return ;
}
BZOJ4892 Tjoi2017dna(后缀数组)的更多相关文章
- 【BZOJ4892】DNA(后缀数组)
[BZOJ4892]DNA(后缀数组) 题面 BZOJ 洛谷 题解 看到这道题目,我第一反应是\(FFT\)??? 然后大力码出了一个\(FFT\) 就像这样 #include<iostream ...
- [BZOJ4892][TJOI2017]DNA(后缀数组)
题目描述 加里敦大学的生物研究所,发现了决定人喜不喜欢吃藕的基因序列S,有这个序列的碱基序列就会表现出喜欢吃藕的性状,但是研究人员发现对碱基序列S,任意修改其中不超过3个碱基,依然能够表现出吃藕的性状 ...
- 后缀数组的倍增算法(Prefix Doubling)
后缀数组的倍增算法(Prefix Doubling) 文本内容除特殊注明外,均在知识共享署名-非商业性使用-相同方式共享 3.0协议下提供,附加条款亦可能应用. 最近在自学习BWT算法(Burrows ...
- BZOJ 4199: [Noi2015]品酒大会 [后缀数组 带权并查集]
4199: [Noi2015]品酒大会 UOJ:http://uoj.ac/problem/131 一年一度的“幻影阁夏日品酒大会”隆重开幕了.大会包含品尝和趣味挑战两个环节,分别向优胜者颁发“首席品 ...
- BZOJ 1692: [Usaco2007 Dec]队列变换 [后缀数组 贪心]
1692: [Usaco2007 Dec]队列变换 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1383 Solved: 582[Submit][St ...
- POJ3693 Maximum repetition substring [后缀数组 ST表]
Maximum repetition substring Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9458 Acc ...
- POJ1743 Musical Theme [后缀数组]
Musical Theme Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 27539 Accepted: 9290 De ...
- 后缀数组(suffix array)详解
写在前面 在字符串处理当中,后缀树和后缀数组都是非常有力的工具. 其中后缀树大家了解得比较多,关于后缀数组则很少见于国内的资料. 其实后缀数组是后缀树的一个非常精巧的替代品,它比后缀树容易编程实现, ...
- 【UOJ #35】后缀排序 后缀数组模板
http://uoj.ac/problem/35 以前做后缀数组的题直接粘模板...现在重新写一下模板 注意用来基数排序的数组一定要开到N. #include<cstdio> #inclu ...
- 【BZOJ-2119】股市的预测 后缀数组
2119: 股市的预测 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 334 Solved: 154[Submit][Status][Discuss ...
随机推荐
- MySql访客连接设置
步骤: 1 . 打开命令窗口,切换到mysql安装目录 可以在控制台目录切换,也可以打开所在安装目录后再打开控制台 2 . 执行命令:mysql -u root -p 3 . 无法访问的话,查看防火墙 ...
- JDK1.7的HashMap的put(key, value)源码剖析
目录 HashMap的put操作源码解析 1.官方文档 2.put(key, value) 3.完结 HashMap的put操作源码解析 1.官方文档 1.1.继承结构 java.lang.Objec ...
- OpenCV参考手册之Mat类详解
OpenCV参考手册之Mat类详解(一) OpenCV参考手册之Mat类详解(二) OpenCV参考手册之Mat类详解(三)
- HBase——使用Put迁移MySql数据到Hbase
先上code: /** * 功能:迁移mysql上电池历史数据到hbase * Created by liuhuichao on 2016/12/6. */ public class MySqlToH ...
- 【LG4491】[HAOI2018]染色
[LG4491][HAOI2018]染色 题面 洛谷 题解 颜色的数量不超过\(lim=min(m,\frac nS)\) 考虑容斥,计算恰好出现\(S\)次的颜色至少\(i\)种的方案数\(f[i] ...
- 【CF543E】Listening to Music
[CF543E]Listening to Music 题面 洛谷 题目大意 给你一个长度为\(n\)序列\(a_i\),和一个常数\(m\),定义一个函数\(f(l,x)\)为\([l,l+m-1]\ ...
- docker基本的常用命令
- 初次学习asp.net core的心得
初次学习Asp.Net Core方面的东西,虽然研究的还不是很深,今天主要是学习了一下Asp.Net Core WebAPI项目的使用,发现与Asp.Net WebAPI项目还是有很多不同.不同点包含 ...
- JavaScript事件冒泡和捕获
事件捕获指的是从document到触发事件的那个节点,即自上而下的去触发事件. 事件冒泡是自下而上的去触发事件. 绑定事件方法的第三个参数,就是控制事件触发顺序是否为事件捕获.true,事件捕获:fa ...
- eBay报告:德国或将成为外贸电商热门市场
[亿邦动力网讯]1月3日消息,日前,跨境电商平台eBay发布公告称,自2014年1月中旬起,卖家在eBay德国 ( eBay.de ).eBay 奥地利 ( eBay.at ) 或eBay瑞士 ( e ...