BZOJ 4034 树上操作(树的欧拉序列+线段树)
刷个清新的数据结构题爽一爽?
题意:
# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <bitset>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
const int N=;
//Code begin... struct Seg{LL sum, tag; int p;}seg[N<<];
struct Edge{int p, next;}edge[N<<];
int head[N], cnt=, node[N], pos, fdfs[N][];
struct DFN{int id; bool flag;}dfn[N<<]; void add_edge(int u, int v){edge[cnt].p=v; edge[cnt].next=head[u]; head[u]=cnt++;}
void dfs(int x, int fa){
dfn[++pos].id=x; dfn[pos].flag=true; fdfs[x][]=pos;
for (int i=head[x]; i; i=edge[i].next) {
int v=edge[i].p;
if (v==fa) continue;
dfs(v,x);
}
dfn[++pos].id=x; dfn[pos].flag=false; fdfs[x][]=pos;
}
void push_up(int p){seg[p].p=seg[p<<].p+seg[p<<|].p; seg[p].sum=seg[p<<].sum+seg[p<<|].sum;}
void push_down(int p, int L){
if (!seg[p].tag) return ;
seg[p].sum+=(LL)(*seg[p].p-L)*seg[p].tag;
seg[p<<].tag+=seg[p].tag; seg[p<<|].tag+=seg[p].tag; seg[p].tag=;
}
void init(int p, int l, int r){
if (l<r) {
int mid=(l+r)>>;
init(lch); init(rch); push_up(p);
}
else {
seg[p].sum=dfn[l].flag?node[dfn[l].id]:-node[dfn[l].id];
seg[p].p=dfn[l].flag;
}
}
LL query(int p, int l, int r, int R){
push_down(p,r-l+);
if (R<l) return ;
if (R>=r) return seg[p].sum;
int mid=(l+r)>>;
return query(lch,R)+query(rch,R);
}
void update1(int p, int l, int r, int X, int val){
push_down(p,r-l+);
if (X<l||X>r) return ;
if (X==l&&X==r) seg[p].sum+=val;
else {
int mid=(l+r)>>;
update1(lch,X,val); update1(rch,X,val); push_up(p);
}
}
void update2(int p, int l, int r, int L, int R, int val){
push_down(p,r-l+);
if (L>r||R<l) return ;
if (L<=l&&R>=r) seg[p].tag+=val, push_down(p,r-l+);
else {
int mid=(l+r)>>;
update2(lch,L,R,val); update2(rch,L,R,val); push_up(p);
}
}
int main ()
{
int n, m, flag, u, v;
scanf("%d%d",&n,&m);
FOR(i,,n) scanf("%d",node+i);
FO(i,,n) scanf("%d%d",&u,&v), add_edge(u,v), add_edge(v,u);
dfs(,);
init(,,n<<);
while (m--) {
scanf("%d%d",&flag,&u);
if (flag==) printf("%lld\n",query(,,n<<,fdfs[u][]));
else {
scanf("%d",&v);
if (flag==) update1(,,n<<,fdfs[u][],v), update1(,,n<<,fdfs[u][],-v);
else update2(,,n<<,fdfs[u][],fdfs[u][],v);
}
}
return ;
}
BZOJ 4034 树上操作(树的欧拉序列+线段树)的更多相关文章
- BZOJ 4034: [HAOI2015]树上操作 [欧拉序列 线段树]
题意: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a . 操作 3 :询问某个节点 x 到根的路径中所有点的点权和. 显然树链剖分可做 ...
- BZOJ 4034 [HAOI2015]树上操作(欧拉序+线段树)
题意: 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都增 ...
- BZOJ 4034"树上操作"(DFS序+线段树)
传送门 •题意 有一棵点数为 N 的树,以点 1 为根,且树点有边权. 然后有 M 个操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的 ...
- HDU 4836 The Query on the Tree lca || 欧拉序列 || 动态树
lca的做法还是非常明显的.简单粗暴, 只是不是正解.假设树是长链就会跪,直接变成O(n).. 最后跑的也挺快,出题人还是挺阳光的.. 动态树的解法也是听别人说能ac的.预计就是放在splay上剖分一 ...
- [BZOJ 4034] 树上操作
Link: BZOJ 4034 传送门 Solution: 树剖模板题…… Code: #include <bits/stdc++.h> using namespace std; type ...
- LOJ #2142. 「SHOI2017」相逢是问候(欧拉函数 + 线段树)
题意 给出一个长度为 \(n\) 的序列 \(\{a_i\}\) 以及一个数 \(p\) ,现在有 \(m\) 次操作,每次操作将 \([l, r]\) 区间内的 \(a_i\) 变成 \(c^{a_ ...
- LightOJ 1370 Bi-shoe and Phi-shoe 欧拉函数+线段树
分析:对于每个数,找到欧拉函数值大于它的,且标号最小的,预处理欧拉函数,然后按值建线段树就可以了 #include <iostream> #include <stdio.h> ...
- loj1370(欧拉函数+线段树)
传送门:Bi-shoe and Phi-shoe 题意:给出多个n(1<=n<=1e6),求满足phi(x)>=n的最小的x之和. 分析:先预处理出1~1e6的欧拉函数,然后建立一颗 ...
- [LNOI] 相逢是问候 || 扩展欧拉函数+线段树
原题为2017六省联考的D1T3 给出一个序列,m次操作,模数p和参数c 操作分为两种: 1.将[l,r]区间内的每个数x变为\(c^x\) 2.求[l,r]区间内数的和%p 首先,我们要了解一些数论 ...
随机推荐
- 20155320 2016-2017-3 《Java程序设计》第三周学习总结
20155320 2016-2017-3 <Java程序设计>第三周学习总结 教材学习内容总结 定义类 步骤: 在程序中定义类 使用new关键词新建一个对象 声明参考名称,并将名称参考至新 ...
- 【SCOI2009】迷路
题面 题解 如果给我们的是一个邻接矩阵,那么直接给邻接矩阵\(T\)次幂即可. 这里的图有边权,那么我们就将它拆成\(9\)个点即可. 代码 #include<cstdio> #inclu ...
- [CF1042D] Petya and Array
题面 题解 这道题目到底叫什么好呢?? 史上最短CDQ分治题 记一个前缀和,然后CDQ分治即可. 代码 #include<cstdio> #include<algorithm> ...
- mac php版本切换
mac os 中自带php版本,但是很多扩展是不带的. 这个网站: http://php-osx.liip.ch/提供了几乎所有的php版本 通过输入 curl -s http://php-osx.l ...
- Git生成多个ssh key
在实际的工作中, 有可能需要连接多个远程仓库, 例如我想连接私有仓库.GitLab官网.GitHub官网, 那么同一台电脑就要生成多个ssh key: ssh-keygen -t rsa -C &qu ...
- Two Sum - 新手上路
不是计算机相关专业毕业的,从来没用过leetcode,最近在学习数据结构和算法,用leetcode练练手. 新手上路,代码如有不妥之处,尽管指出来. 今天抽空做的第一个题:Two Sum(最简单的呃呃 ...
- vue2.0做移动端开发用到的相关插件和经验总结
最近一直在做移动端微信公众号项目的开发,也是我首次用vue来开发移动端项目,前期积累的移动端开发经验较少.经过这个项目的锻炼,加深了对vue相关知识点的理解和运用,同时,在项目中所涉及到的微信api( ...
- Atom 插件 Sync Settings 备份与恢复
当使用 Atom IDEA.随着使用的越来越多,安装的插件也越来越多,一旦电脑重装后需要复原开发环境,这将是一件比较头疼的事.「Sync Settings」插件可以帮助我们解决这个问题. 操作流程 安 ...
- Paper Reading - Attention Is All You Need ( NIPS 2017 ) ★
Link of the Paper: https://arxiv.org/abs/1706.03762 Motivation: The inherently sequential nature of ...
- 【Python入门总结】
用了两周时间将python的基本语法和模块过了一遍,alex的视频也简单看了下;并且在项目中直接上了python解析语义的实现,初步感觉到了python语言的魅力.下一步,会按照廖雪峰的python学 ...