C语言——无向带权图邻接矩阵的建立
#include <stdio.h>
#include "Graph.h"
#define MAX_INT 32767 /*
#define vnum 20
#define MAX_INT = 32767 // 邻接矩阵
typedef struct gp
{
int vexs[vnum]; // 顶点信息
int arcs[vnum][vnum]; // 邻接矩阵
int vexnum, arcnum; // 顶点数,边数
}Graph; */ // 无向带权图邻接矩阵的建立
void CreateGraph(Graph *g)
{
int i,j,n,e,w,k;
int info; // 读入顶点数和边数
scanf("%d %d", &n, &e);
g->vexnum = n;
g->arcnum = e; // 读入顶点信息
for(i = ;i < g->vexnum;i++)
{
scanf("%d", &info);
g->vexs[i] = info;
} // 初始化邻接矩阵
for(i = ;i < g->vexnum;i++)
{
for(j = ;j < g->vexnum;j++)
{
g->arcs[i][j] = MAX_INT;
}
} // 读入边(顶点对)和权值
for(k = ;k < g->arcnum;k++)
{
scanf("%d %d %d", &i, &j, &w);
g->arcs[i][j] = w;
g->arcs[j][i] = w;
}
} // 伪算法,未必能运行 main()
{ }
C语言——无向带权图邻接矩阵的建立的更多相关文章
- 无向带权图的最小生成树算法——Prim及Kruskal算法思路
边赋以权值的图称为网或带权图,带权图的生成树也是带权的,生成树T各边的权值总和称为该树的权. 最小生成树(MST):权值最小的生成树. 生成树和最小生成树的应用:要连通n个城市需要n-1条边线路.可以 ...
- 带权图的最短路径算法(Dijkstra)实现
一,介绍 本文实现带权图的最短路径算法.给定图中一个顶点,求解该顶点到图中所有其他顶点的最短路径 以及 最短路径的长度.在决定写这篇文章之前,在网上找了很多关于Dijkstra算法实现,但大部分是不带 ...
- Java数据结构——带权图
带权图的最小生成树--Prim算法和Kruskal算法 带权图的最短路径算法--Dijkstra算法 package graph; // path.java // demonstrates short ...
- java数据结构----带权图
1.带权图:要引入带权图,首先要引入最小生成树,当所有的边拥有相同的权值时.问题变得简单了,算法可以选择任意一条边加入最小生成树.但是当边有不同的权值时,需要用一些算法决策来选择正确的边. 2.带权图 ...
- C语言数据结构基础学习笔记——图
图(G)由顶点集(V)和边集(E)组成,G=(V,E) 常用概念: ①V(G)表示图G中顶点的有限非空集,V永不为空: ②用|V|表示图G中顶点的个数,也称为图G的阶: ③E(G)表示图G中顶点之间关 ...
- 有向网络(带权的有向图)的最短路径Dijkstra算法
什么是最短路径? 单源最短路径(所谓单源最短路径就是只指定一个顶点,最短路径是指其他顶点和这个顶点之间的路径的权值的最小值) 什么是最短路径问题? 给定一带权图,图中每条边的权值是非负的,代表着两顶点 ...
- 洛谷.2619.[国家集训队2]Tree I(带权二分 Kruskal)
题目链接 \(Description\) 给定一个无向带权连通图,每条边是黑色或白色.求一棵最小权的恰好有K条白边的生成树. \(Solution\) Kruskal是选取最小的n-1条边.而白边数有 ...
- 某种带权有向无环图(graph)的所有路径的求法
// 讨论QQ群:135202158 最近做某个东西,最后用图实现了,这里总结一下算法. 假设有以下带权有向无环图(连通或非连通,我这里用的是非连通的): 每个节点(node)可能与其他节点有向地相连 ...
- 设计一个算法,採用BFS方式输出图G中从顶点u到v的最短路径(不带权的无向连通图G採用邻接表存储)
思想:图G是不带权的无向连通图.一条边的长度计为1,因此,求带顶点u和顶点v的最短的路径即求顶点u和顶点v的边数最少的顶点序列.利用广度优先遍历算法,从u出发进行广度遍历,类似于从顶点u出发一层一层地 ...
随机推荐
- C#-WebForm-css box-shadow 给边框添加阴影效果
box-shadow介绍 css3可以使用 box-shadow 属性轻松地为元素添加阴影效果,box-shadow可以设定多组效果,每组参数值以逗号分隔. 语法: box-shadow:x-shad ...
- Windows运行常用命令(win+R)
Windows运行常用命令(win+R) 1.calc: 启动计算器 2.notepad: 打开记事本 3.write: 写字板 4.mspaint: 画图板 5.snippingtool:截图工具, ...
- Secondary NameNode究竟是做什么的
Secondary NameNode:它究竟有什么作用? 在hadoop中,有一些命名不好的模块,Secondary NameNode是其中之一.从它的名字上看,它给人的感觉就像是NameNode的备 ...
- OpenERP how to set the tree view limit
return { 'name':u'库存报表', 'view_type':'form', 'view_mode':'tree,form', 'res_model':'rainsoft.account. ...
- (转)Python 运算符
原文:https://blog.csdn.net/liang19890820/article/details/69690954 简述 在 Python 中,运算符是执行算术或逻辑运算的特殊符号,操作的 ...
- 使用webpack && react环境
使用webpack webpack是一款模块化的打包工具,它认为所有的文件都是模块,包括js,css等等,版本为2.x推荐学习,1.x版本已废弃,不建议使用. 目前,facebook官方就是使用web ...
- github里如何删除一个repository仓库
高手请绕行,新手往下走. 作为一个刚接触github(https://github.com/)的新手,除了感叹开源的丰富和强大之外,自己肯定也想试用一下,因此申请帐号神马的.今天自己创建一个Repos ...
- Elastic-Job源码分析之AbstractElasticJobExecutor分析
还记得我们在JobScheduler中,在创建任务详情时,会调用一个建造器JobBuilder来创建一个Job,类型是LiteJob. LiteJob.java /** * Lite调度作业. * * ...
- 基础js--调试js
1,逻辑错误 常见错误: 是否由于拼写错误而导致申明了新的变量? 是否在条件判定上出现了疏漏? 方法:使用开发者工具调试代码 2,代码错误 常见错误: 是否拼写错误? 是否使用中文的符号? 扩展: 1 ...
- 深度学习(四) softmax函数
softmax函数 softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类! 假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个元素 ...