uva1424
Traveling salesmen of nhn. (the prestigious Korean internet company) report their current location to the company on a regular basis. They also have to report their new location to the company if they are moving to another location. The company keep each salesman's working path on a map of his working area and uses this path information for the planning of the next work of the salesman. The map of a salesman's working area is represented as a connected and undirected graph, where vertices represent the possible locations of the salesman an edges correspond to the possible movements between locations. Therefore the salesman's working path can be denoted by a sequence of vertices in the graph. Since each salesman reports his position regularly an he can stay at some place for a very long time, the same vertices of the graph can appear consecutively in his working path. Let a salesman's working path be correct if two consecutive vertices correspond either the same vertex or two adjacent vertices in the graph.
For example on the following graph representing the working area of a salesman,
a reported working path [1 2 2 6 5 5 5 7 4] is a correct path. But a reported working path [1 2 2 7 5 5 5 7 4] is not a correct path since there is no edge in the graph between vertices 2 a 7. If we assume that the salesman reports his location every time when he has to report his location (but possibly incorrectly), then the correct path could be [1 2 2 4 5 5 5 7 4], [1 2 4 7 5 5 5 7 4], or [1 2 2 6 5 5 5 7 4].
The length of a working path is the number of vertices in the path. We define the distance between two pathsA = a1a2...an <tex2html_verbatim_mark>and B = b1b2...bn <tex2html_verbatim_mark>of the same length n <tex2html_verbatim_mark>as
<tex2html_verbatim_mark>
where
<tex2html_verbatim_mark>
Given a graph representing the working area of a salesman and a working path (possible not a correct path),A <tex2html_verbatim_mark>, of a salesman, write a program to compute a correct working path, B <tex2html_verbatim_mark>, of the same length where the distance dist(A, B) <tex2html_verbatim_mark>is minimized.
Input
The program is to read the input from standard input. The input consists of T <tex2html_verbatim_mark>test cases. The number of test cases (T) <tex2html_verbatim_mark>is given in the first line of the input. The first line of each test case contains two integers n1<tex2html_verbatim_mark>, n2 <tex2html_verbatim_mark>(3n1100, 2n24, 950) <tex2html_verbatim_mark>where n1 <tex2html_verbatim_mark>is the number of vertices of the graph representing the working map of a salesman and n2 <tex2html_verbatim_mark>is the number of edges in the graph. The input graph is a connected graph. Each vertex of the graph is numbered from 1 to n1 <tex2html_verbatim_mark>. In the following n2 <tex2html_verbatim_mark>lines, each line contains a pair of vertices which represent an edge of the graph. The last line of each test case contains information on a working path of the salesman. The first integer n <tex2html_verbatim_mark>(2n200) <tex2html_verbatim_mark>in the line is the length of the path and the following n integers represent the sequence of vertices in the working path.
Output
Your program is to write to standard output. Print one line for each test case. The line should contain the minimum distance of the input path to a correct path of the same length.
Sample Input
2
7 9
1 2
2 3
2 4
2 6
3 4
4 5
5 6
7 4
7 5
9 1 2 2 7 5 5 5 7 4
7 9
1 2
2 3
2 4
2 6
3 4
4 5
5 6
7 4
7 5
9 1 2 2 6 5 5 5 7 4
Sample Output
1
0
这题说的是给了一个图,如上,一个人从图中的任意位置出发,总共返回了n次自己的位置,这些位置可能是不合法的也就是所两点之间不相邻但是他们却在返回的点中相邻,返回的点中允许有相同的点相邻,(表明他也一直在这个点上),
输入 给n个点,表示返回的n个点。
输出 找出一条路径同样拥有n个点(合法的),使得这两序列的最长公共子序列最长,输出差异的几个数
先用floyd 求出任意点之间的距离,然后dp[i] 表示到i为止合法的最小差异, 初始化的是dp[i]=i;
然后 当他们的距离小于等于他们在序列中出现的顺序的时候 dp[j]=min(dp[j],dp[i]+j-i-1);
输出dp[n-1]
#include <iostream>
#include <cstdio>
#include <string.h>
#include <algorithm>
#include <cmath>
using namespace std;
const int maxn=;
const int INF =;
int dist[maxn][maxn];
int sa[maxn*];
int dp[maxn*];
void inti(int n1){
for(int k=; k<=n1; ++k)
for(int i=; i<=n1; ++i)
for(int j=; j<=n1; ++j)
if(dist[i][k]<INF&&dist[k][j]<INF)
dist[i][j]=dist[i][j]<(dist[i][k]+dist[k][j])?dist[i][j]:(dist[i][k]+dist[k][j]); }
int main()
{
int cas;
scanf("%d",&cas);
while(cas--){
int n1,n2;
scanf("%d%d",&n1,&n2);
for(int i=; i<=n1; i++)
for(int j=; j<=n1; ++j )
dist[i][j]=i==j?:INF;
for(int i=; i<n2; ++i){
int a,b;
scanf("%d%d",&a,&b);
dist[a][b]=dist[b][a]=;
}
inti(n1);
int n;
scanf("%d",&n);
for(int i=; i<n; ++i)
scanf("%d",&sa[i]);
for(int i=; i<n; ++i)
dp[i]=i;
for(int i=; i<n; ++i)
for( int j=i+; j<n; ++j)
if(dist[ sa[i] ][ sa[j] ]<=j-i)
dp[j]=min(dp[j], dp[i]+j-i-);
printf("%d\n",dp[n-]);
}
return ;
}
uva1424的更多相关文章
- UVa1424–Salesmen(DP)
题目大意 给定一个包含n(n<=100)个点的无向连通图和一个长度为L的序列A(L<=200),你的任务是修改尽量少的数,使得序列中的任意两个相邻的数或者相同,或者对应图中两个相邻结点 题 ...
随机推荐
- JDK1.8在LINUX下安装步骤
JDK1.8在LINUX下安装步骤: 在/usr/lib/目录下新建jvm文件夹,如果已有jvm文件夹,则将之前的JDK版本删除,即在jvm目录下执行命令:rm –rf * 将JDK文件jdk-8u4 ...
- mongodb3.2系统性学习——3、update()操作
mongodb 包含众多的原子性操作: 实例: //连接数据库 dbService = connect("localhost:27017"); //选择插入集合 db = dbS ...
- windbg载入目标模块pdb
.reload /f xxxx.dll ld xxxx 以kdcom为例子 .reload /f kdcom.dll ld kdcom 二选一
- mysql的介绍和安装
本节内容 1.数据库介绍 2.mysql管理 3.mysql数据类型 4.常用mysql命令 创建数据库 外键 增删改查表 5.事务 6.索引 1.数据库介绍 什么是数据库? 数据库(Database ...
- JS-比较函数中嵌套函数,可以排序【对象数组】
function createCompareFun(propertyName){ return function(object1,object2){ var value1 = object1[prop ...
- JavaIO简单代码实例
最近又复习了下JavaIO写了些实例代码都很简单但是能体现大部分方法的用法. IO流实现文件的拷贝 几种不同的方法: package com.wxisme.TestIO; import java. ...
- css选择器的性能
性能排序: 1.id选择器(#myid) 2.类选择器(.myclassname) 3.标签选择器(div,h1,p) 4.相邻选择器(h1+p) 5.子选择器(ul < li) 6.后代选择器 ...
- 【黑金原创教程】【TimeQuest】TimeQuest原创教程连载导读【连载完成,共七章】
[第一章]TimeQuest 静态时序分析模型的概念 [第二章]TimeQuest模型角色,网表概念,时序报告 [第三章]TimeQuest 扫盲文 [第四章]内部延迟与其他 [第五章]网表质量与外部 ...
- centos7上安装iptables
centos7上安装iptables的步骤 注意:CentOS7默认的防火墙不是iptables,而是firewalle. 安装iptable iptable-service #安装iptables ...
- 监控linux流量shell版
想要实时查看linux流量情况,又不想再去下第三方工具,可以直接写脚步运行! 系统:centos 6.5 原理:从/proc/net/dev中获取到流量情况,再通过换算并除以间隔时间来得到流量单位M ...