一  无向图单源最短路径,Dijkstra算法

计算源点a到图中其他节点的最短距离,是一种贪心算法。利用局部最优,求解全局最优解。

设立一个visited访问和dist距离数组,在初始化后每一次收集一个当前最短的节点cur并将其标记为visited,然后更新这个节点的未被收集临近节点的dist值 [ if ( visited[t] != True && (dis[cur]+ Graph[cur][t]) < dis[t] )  ],直到所有节点被访问。查找dist中的最短路径节点,可使用最小堆或二项堆,降低时间复杂度。


 /* Dijkstra of shortest path of single source in graph */

#include <stdio.h>
#define MAX 100
/* int as +/-[2^31] --> 0-2147483647 */
#define INFIN 2147483647
enum BOOL {
False, True
}; int Graph[MAX][MAX]; /* matrix of graph */
int dis[MAX]; /* distance from origin other nodes */
BOOL visited[MAX]; void Dijkstra( int v0 , int N); int main(int argc, char *argv[])
{
int i, j, k;
int N, M, src, dst, distance;
int start; /* input vertex number and edge number */
scanf("%d%d", &N, &M);
/* Initialize the vertax and edge of graph matrix */
for ( i = ; i < N; i++ ) {
for ( j = ; j < N; j++ ) {
if ( i == j ) {
/* edge of vertax itself*/
Graph[i][j] = ;
} else {
/* all edge large than 0, unless it's unkonwn */
Graph[i][j] = INFIN;
}
}
} /* Init the orignal graph edge */
printf("Please input the init edge\n");
for ( k = ; k < M; k++ ) {
scanf("%d%d%d", &src, &dst, &distance);
Graph[src][dst] = distance;
} printf("Please input the start vertax:");
scanf("%d", &start);
if ( start >= ) {
Dijkstra( start, N);
printf("Distance from %d to others as follows:\n", start);
printf("src --> dst\n"); for ( k = ; k < N; k++ ) {
printf("%d-->%d cost:%d ", start, k, dis[k]);
if ( k > && (k % ) == ) {
printf("\n");
} }
}
return ;
} void Dijkstra( int v0, int N )
{
/* Init dis */
int i, j, k, t; /* cur represent current vertax */
int cur, mini_dis;
for ( i = ; i < N; i++ ) {
dis[i] = Graph[v0][i];
visited[i] = False;
}
cur = v0;
visited[v0] = True;
mini_dis = INFIN; /* find dis to another MAX-1 points */
for ( j = ; j < N; j++ ) {
/* for simple use,iterate the array to find a shortest*/
for ( k = ; k < N; k++ ) {
if ( visited[k] != True &&
dis[k] < mini_dis ) {
mini_dis = dis[k];
cur = k;
}
}
visited[cur] = True; /* Update the correlated dis with current shortest point */
for ( t = ; t < N; t++ ) {
if ( Graph[cur][t] < dis[t] ) {
/* update if dis to [cur veratx + edge] < [dis to t] */
if ( visited[t] != True &&
(dis[cur]+ Graph[cur][t]) < dis[t] ) {
dis[t] = dis[cur] + Graph[cur][t];
}
}
}
}
}

数据结构与算法-图的最短路径Dijkstra的更多相关文章

  1. python数据结构与算法——图的最短路径(Dijkstra算法)

    # Dijkstra算法——通过边实现松弛 # 指定一个点到其他各顶点的路径——单源最短路径 # 初始化图参数 G = {1:{1:0, 2:1, 3:12}, 2:{2:0, 3:9, 4:3}, ...

  2. python数据结构与算法——图的最短路径(Floyd-Warshall算法)

    使用Floyd-Warshall算法 求图两点之间的最短路径 不允许有负权边,时间复杂度高,思路简单 # 城市地图(字典的字典) # 字典的第1个键为起点城市,第2个键为目标城市其键值为两个城市间的直 ...

  3. python数据结构与算法——图的最短路径(Bellman-Ford算法)解决负权边

    # Bellman-Ford核心算法 # 对于一个包含n个顶点,m条边的图, 计算源点到任意点的最短距离 # 循环n-1轮,每轮对m条边进行一次松弛操作 # 定理: # 在一个含有n个顶点的图中,任意 ...

  4. Python数据结构与算法之图的最短路径(Dijkstra算法)完整实例

    本文实例讲述了Python数据结构与算法之图的最短路径(Dijkstra算法).分享给大家供大家参考,具体如下: # coding:utf-8 # Dijkstra算法--通过边实现松弛 # 指定一个 ...

  5. c/c++ 图的最短路径 Dijkstra(迪杰斯特拉)算法

    c/c++ 图的最短路径 Dijkstra(迪杰斯特拉)算法 图的最短路径的概念: 一位旅客要从城市A到城市B,他希望选择一条途中中转次数最少的路线.假设途中每一站都需要换车,则这个问题反映到图上就是 ...

  6. 图的最短路径-----------Dijkstra算法详解(TjuOj2870_The Kth City)

    做OJ需要用到搜索最短路径的题,于是整理了一下关于图的搜索算法: 图的搜索大致有三种比较常用的算法: 迪杰斯特拉算法(Dijkstra算法) 弗洛伊德算法(Floyd算法) SPFA算法 Dijkst ...

  7. 图的最短路径——dijkstra算法和Floyd算法

    dijkstra算法 求某一顶点到其它各个顶点的最短路径:已知某一顶点v0,求它顶点到其它顶点的最短路径,该算法按照最短路径递增的顺序产生一点到其余各顶点的所有最短路径. 对于图G={V,{E}};将 ...

  8. 图的最短路径Dijkstra

    #include <stdio.h> #include <string.h> #include <vector> #include <queue> #i ...

  9. python数据结构与算法——图的基本实现及迭代器

    本文参考自<复杂性思考>一书的第二章,并给出这一章节里我的习题解答. (这书不到120页纸,要卖50块!!,一开始以为很厚的样子,拿回来一看,尼玛.....代码很少,给点提示,然后让读者自 ...

随机推荐

  1. [转发]CPU个数、CPU核心数、CPU线程数

    我们在选购电脑的时候,CPU是一个需要考虑到核心因素,因为它决定了电脑的性能等级.CPU从早期的单核,发展到现在的双核,多核.CPU除了核心数之外,还有线程数之说,下面文本就来解释一下CPU的核心数与 ...

  2. 深入探索C++对象模型(1) 关于对象(思维导图)

    通过上面整个关于对象的基础知识框架,我们来分析两个例子,看一下在内存中,对象究竟长什么样.   Demo1:C++对象模型的内存布局 class Point { public: Point( floa ...

  3. 深入浅出VisualStudio——使用NuGet来安装AjaxControlToolKit

    使用NuGet可以加速配置Visual Studio 2010的开发环境. 1.创建一个空的ASP.NET web站点项目. 2.右键单击此web 站点,选择Manage NuGet Packages ...

  4. 解决charles中文乱码(附代码)

    1. 将下面的代码保存为一个*.xml的文件 <?xml version='1.0' encoding='UTF-8' ?> <?charles serialisation-vers ...

  5. lvs安装文档

    安装lvs应用模块 1.安装依赖包: [root@client lvs]# yum -y install ipvs* 2.验证本机ip_vs模块是否加载 [root@client lvs]# -.el ...

  6. spring mvc 多数据源切换,不支持事务控制[一]

    一个项目中需要使用两个数据库,Oracle 和Mysql ,于是参考各个blog,实现此功能.写好后才发现,原来的事务失效了,我去... spring-mybatis.xml 配置 <bean ...

  7. PhoneGap获取设备信息

    一. 获取设备信息的方法列表(如果没有或者检测不出来就显示undefined) 1.device.name              设备名称(一些国产机检测不出来) 2.device.model   ...

  8. BZOJ1880:[SDOI2009]Elaxia的路线(最短路,拓扑排序)

    Description 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间.Elaxia和w**每天都要奔波于宿舍和实验室之间, ...

  9. 图论——最短路径 Dijkstra算法、Floyd算法

    1.弗洛伊德算法(Floyd) 弗洛伊算法核心就是三重循环,M [ j ] [ k ] 表示从 j 到 k 的路径,而 i 表示当前 j 到 k 可以借助的点:红色部分表示,如果 j 到 i ,i 到 ...

  10. java 静态相关内容

    一般情况下,如果有些代码必须在项目启动的时候就执行的时候,需要使用静态代码块,这种代码是主动执行的;需要在项目启动的时候就初始化,在不创建对象的情况下,其他程序来调用的时候,需要使用静态方法,这种代码 ...