QuantLib 金融计算——随机过程之概述
如果未做特别说明,文中的程序都是 Python3 代码。
QuantLib 金融计算——随机过程之概述
载入模块
import QuantLib as ql
print(ql.__version__)
1.12
框架
随机过程是金融工程中的一个核心概念,是沟通理论分析和计算实践的枢纽。quantlib-python 提供了一组成体系的类架构用于描述实际中最常见到的几种随机过程,以 1.12 版本为例:
C++ 版本的实现提供了更多具体的随机过程。
其中最根本的基类是 StochasticProcess
,然后衍生出三大类别:
HestonProcess
:特殊的二维随机过程——Heston 过程;BatesProcess
:一种带跳跃的 Heston 过程;
StochasticProcessArray
:描述一般的多维随机过程;StochasticProcess1D
:描述常用的若干一维随机过程。GeneralizedBlackScholesProcess
:Black-Scholes 框架下四种最常用的随机过程BlackScholesProcess
:\(d \ln S ( t ) = \left( r ( t ) - \frac { \sigma ( t , S ) ^ { 2 } } { 2 } \right) d t + \sigma d W _ { t }\)BlackScholesMertonProcess
:\(d \ln S ( t , S ) = \left( r ( t ) - q ( t ) - \frac { \sigma ( t , S ) ^ { 2 } } { 2 } \right) d t + \sigma d W _ { t }\)BlackProcess
:\(d \ln S ( t ) = - \frac { \sigma ( t , S ) ^ { 2 } } { 2 } d t + \sigma d W _ { t }\)GarmanKohlagenProcess
:\(d \ln S ( t ) = \left( r ( t ) - r _ { f } ( t ) - \frac { \sigma ( t , S ) ^ { 2 } } { 2 } \right) d t + \sigma d W _ { t }\)
VarianceGammaProcess
Merton76Process
GeometricBrownianMotionProcess
:\(d S ( t , S ) = \mu S d t + \sigma S d W _ { t }\)HullWhiteProcess
HullWhiteForwardProcess
GsrProcess
基类 StochasticProcess
模拟一个 d 维 Ito 过程:
\]
quantlib-python 默认的离散化方法是 Euler 方法:
\]
用法与接口
随机过程类的用法基本上是首先初始化一个实例,然后并将其传递给其他类的实例,这些类的实例从中提取所需的变量。一个例子是普通的 Black-Scholes 期权定价器,它从随机过程中检索出波动率。另一个例子是蒙特卡罗定价框架中的路径生成器,需要随机过程的参数,生成对应的路径。
StochasticProcess
提供下列成员函数:
size()
:整数,返回随机过程的维度;initialValues()
:Array
,返回数组 \(S_0\);drift(t, x)
:Array
,返回数组 \(\mu(t,S_t)\);t
和x
分别是浮点数和Array
;diffusion(t, x)
:Array
,返回数组 \(\sigma(t,S_t)\);t
和x
分别是浮点数和Array
;expectation(t0, x0, dt)
:Array
,根据具体的离散方法返回数组 \(E \left( S_{ t_0 + \Delta t} | S_{ t_0 } = x_0 \right)\);t0
、dt
是浮点数,x0
是Array
;stdDeviation(t0, x0, dt)
:Matrix
,根据具体的离散方法返回标准差矩阵 \(Std \left( S_{ t_0 + \Delta t} | S_{ t_0 } = x_0 \right)\);t0
、dt
是浮点数,x0
是Array
;covariance(t0, x0, dt)
:Matrix
,根据具体的离散方法返回协方差矩阵 \(Cov \left( S_{ t_0 + \Delta t} | S_{ t_0 } = x_0 \right)\);t0
、dt
是浮点数,x0
是Array
;evolve(t0, x0, dt, dw)
:Array
,根据 \(S_{ t_0}\) 和 Brownian 运动增量 \(\Delta W\) 产生 \(S_{ t_0 + \Delta t}\),默认返回 \(E \left( \mathrm S_{ t_0 + \Delta t } | S_{ t_0 } \right) + \sigma \left( \mathrm S_{ t_0 + \Delta t } | S_{ t_0 } \right) \Delta \mathrm { W }\),其中 \(\sigma\) 是标准差(矩阵).
对于 StochasticProcess1D
类,该类继承自 StochasticProcess
类,提供了从 StochasticProcess
派生的所有函数,但这些函数使用浮点数对象而不是 Array
和 Matrix
对象。
QuantLib 金融计算——随机过程之概述的更多相关文章
- QuantLib 金融计算——随机过程之一般 Black Scholes 过程
目录 QuantLib 金融计算--随机过程之一般 Black Scholes 过程 一般 Black Scholes 过程 如果未做特别说明,文中的程序都是 Python3 代码. QuantLib ...
- QuantLib 金融计算——随机过程之 Heston 过程
目录 QuantLib 金融计算--随机过程之 Heston 过程 Heston 过程 参考文献 如果未做特别说明,文中的程序都是 Python3 代码. QuantLib 金融计算--随机过程之 H ...
- QuantLib 金融计算
我的微信:xuruilong100 <Implementing QuantLib>译后记 QuantLib 金融计算 QuantLib 入门 基本组件之 Date 类 基本组件之 Cale ...
- QuantLib 金融计算——基本组件之 Currency 类
目录 QuantLib 金融计算--基本组件之 Currency 类 概述 构造函数 成员函数 如果未做特别说明,文中的程序都是 python3 代码. QuantLib 金融计算--基本组件之 Cu ...
- QuantLib 金融计算——高级话题之模拟跳扩散过程
目录 QuantLib 金融计算--高级话题之模拟跳扩散过程 跳扩散过程 模拟算法 面临的问题 "脏"的方法 "干净"的方法 实现 示例 参考文献 如果未做特别 ...
- QuantLib 金融计算——数学工具之数值积分
目录 QuantLib 金融计算--数学工具之数值积分 概述 常见积分方法 高斯积分 如果未做特别说明,文中的程序都是 Python3 代码. QuantLib 金融计算--数学工具之数值积分 载入模 ...
- QuantLib 金融计算——数学工具之求解器
目录 QuantLib 金融计算--数学工具之求解器 概述 调用方式 非 Newton 算法(不需要导数) Newton 算法(需要导数) 如果未做特别说明,文中的程序都是 Python3 代码. Q ...
- QuantLib 金融计算——数学工具之插值
目录 QuantLib 金融计算--数学工具之插值 概述 一维插值方法 二维插值方法 如果未做特别说明,文中的程序都是 Python3 代码. QuantLib 金融计算--数学工具之插值 载入模块 ...
- QuantLib 金融计算——数学工具之优化器
目录 QuantLib 金融计算--数学工具之优化器 概述 Optimizer Constraint OptimizationMethod EndCriteria 示例 Rosenbrock 问题 校 ...
随机推荐
- BaseSEOPage统一设置网站SEO
代码: public class BaseSeoPage : System.Web.UI.Page { protected override void OnPreLoad(EventArgs e) { ...
- 数据库查询返回Resource id #9后的处理方式
如果在调用PHP查询数据库,在echo后返回的是Resource id #9,可能你的输出方式是: $sql="SELECT * FROM dbname WHERE id='1'" ...
- Laravel 使用 Provider 为程序提供运行时配置服务
需求: 配置参数存在数据库中,Model 是 aah,需要在每次运行时,程序可以在任何地方采用 config("aah.name") 的方式访问配置信息. 思路: 采用 Provi ...
- [.NET] WeakReference的使用
声明:本篇博客翻译自:http://tipsandtricks.runicsoft.com/CSharp/WeakReferences.html 由于水平(技术水平+英语理解能力)有限/不足,肯定会有 ...
- iOS9 视频播放
self.videoFileURL = [NSURL URLWithString:[NSString stringWithFormat:@"file:///%@", self ...
- [label][Fireworks][转载] Web Slices - Fireworks CS5
Web Slices – Fireworks CS5 http://bestwebdesignz.com/tips/fireworks/web-slices-fireworks-cs5/ Need a ...
- 如何注册GitHub
一.个人介绍 姓名:张志龙 学号:1413042026 班级:网工141 爱好:宅物 能力:c++编程 二.注册 注册GitHub其实很简单 首先我们要做的是打开官网 www.github.com(如 ...
- 注册一个GitHub用户的过程
今天,我注册了一个GitHub用户.一开始,不知道GitHub是什么,还以为叫什么"getup",心里还想着什么网站名字这么奇怪,后来在舍友的帮助之下知道了原来是叫GitHub.下 ...
- ------------------java collection 集合学习 ----小白学习笔记,,有错,请指出谢谢
<!doctype html>java对象集合学习记录 figure:first-child { margin-top: -20px; } #write ol, #write ul { p ...
- IDEA 配置SSH2
系统换成了mac os,因为喜欢它的界面体验,同时受不了win下面系统对硬盘的疯狂访问.发现在mac下面,IDEA真的不错,速度上快,并且它的智能提示真的很厉害.但是导入一个myeclipse的ssh ...