bzoj4569: [Scoi2016]萌萌哒(ST表+并查集)
好喵喵的题
将一个要求用ST表分割成logn个要求,如果把f[i][j]和f[u][v]在同一个集合,那么f[i][j-1]和f[u][v-1],f[i+2^(j-1)][j-1]和f[u][u+2^(v-1)][v-1]就并到同一个集合,最后只需要计算f[i][0]不同的集合数cnt,则答案为9*10^(cnt-1)
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int maxn=,mod=1e9+;
int n,m,l1,r1,l2,r2,tot,ans,cnt;
int mi[maxn],f[maxn][],posi[maxn*],posj[maxn*],fa[maxn*];
bool v[maxn*];
inline void read(int &k)
{
int f=;k=;char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(c<=''&&c>='')k=k*+c-'',c=getchar();
k*=f;
}
int gf(int x){return fa[x]==x?x:fa[x]=gf(fa[x]);}
void merge(int x,int y){x=gf(x);y=gf(y);fa[x]=y;}
int main()
{
read(n);read(m);
if(n==)return puts(""),;
mi[]=;for(int i=;i<=;i++)mi[i]=mi[i-]<<;
for(int i=;i<=n;i++)
for(int j=;j<=;j++)
f[i][j]=++tot,posi[tot]=i,posj[tot]=j,fa[tot]=tot;
for(int i=;i<=m;i++)
{
read(l1);read(r1);read(l2);read(r2);
for(int j=;j>=;j--)
if(l1+mi[j]-<=r1)
{
merge(f[l1][j],f[l2][j]);
l1+=mi[j];l2+=mi[j];
}
}
for(int j=;j;j--)
for(int i=;i<=n;i++)
{
int now=gf(f[i][j]);
int u=posi[now],v=posj[now];
merge(f[i][j-],f[u][v-]);
merge(f[i+mi[j-]][j-],f[u+mi[v-]][v-]);
}
for(int i=;i<=n;i++)if(!v[fa[f[i][]]=gf(fa[f[i][]])])v[fa[f[i][]]]=,cnt++;
ans=;for(int i=;i<cnt;i++)ans=1ll*ans*%mod;
printf("%d\n",ans);
}
bzoj4569: [Scoi2016]萌萌哒(ST表+并查集)的更多相关文章
- 【BZOJ-4569】萌萌哒 ST表 + 并查集
4569: [Scoi2016]萌萌哒 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 459 Solved: 209[Submit][Status] ...
- BZOJ 4569 [Scoi2016]萌萌哒 | ST表 并查集
传送门 BZOJ 4569 题解 ST表和并查集是我认为最优雅(其实是最好写--)的两个数据结构. 然鹅!他俩加一起的这道题,我却--没有做出来-- 咳咳. 正解是这样的: 类似ST表有\(\log ...
- BZOJ 4569 [Scoi2016]萌萌哒 ——ST表 并查集
好题. ST表又叫做稀疏表,这里利用了他的性质. 显然每一个条件可以分成n个条件,显然过不了. 然后发现有许多状态是重复的,首先考虑线段树,没什么卵用. 然后ST表,可以每一层表示对应的区间大小的两个 ...
- BZOJ4569 SCOI2016萌萌哒(倍增+并查集)
一个显然的暴力是用并查集记录哪些位之间是相等的.但是这样需要连nm条边,而实际上至多只有n条边是有用的,冗余过多. 于是考虑优化.使用类似st表的东西,f[i][j]表示i~i+2^j-1与f[i][ ...
- 【BZOJ 4569】 4569: [Scoi2016]萌萌哒 (倍增+并查集)
4569: [Scoi2016]萌萌哒 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 865 Solved: 414 Description 一个长 ...
- 洛谷P3295 [SCOI2016]萌萌哒(倍增+并查集)
传送门 思路太妙了啊…… 容易才怪想到暴力,把区间内的每一个数字用并查集维护相等,然后设最后总共有$k$个并查集,那么答案就是$9*10^{k-1}$(因为第一位不能为0) 考虑倍增.我们设$f[i] ...
- [SCOI2016]萌萌哒(倍增+并查集)
当区间\([a,b]\)和\([c,d]\)对应相等时. 我们把两个区间对应位置上的数所在并查集合并. 最后并查集的数量为\(num\)答案就是\(9*10^num\)因为是个数,不能有前置\(0\) ...
- SQL Server利用RowNumber()内置函数与Over关键字实现通用分页存储过程(支持单表或多表结查集分页)
SQL Server利用RowNumber()内置函数与Over关键字实现通用分页存储过程,支持单表或多表结查集分页,存储过程如下: /******************/ --Author:梦在旅 ...
- [BZOJ4569][SCOI2016]萌萌哒(倍增+并查集)
首先有一个显然的$O(n^2)$暴力做法,将每个位置看成点,然后将所有限制相等的数之间用并查集合并,最后答案就是9*(10^连通块的个数).(特判n=1时就是10). 然后比较容易想到的是,由于每次合 ...
随机推荐
- 学习HTML 第三节.接近正题:HTML样式-CSS级联样式表
CSS (Cascading Style Sheets)级联样式表 内联样式 内联样式- 在HTML元素中使用"style" 属性 使用内联样式的方法是在相关的标签中使用样式属性. ...
- Java EE平台介绍(译)
Java EE平台介绍 2.1 企业应用总览 这一部分将对企业应用及其设计和开发进行简单介绍. 就像之前说的,Java EE 平台是为了帮助开发者开发大规模.多层次.可伸缩.服务可靠.网络安全的应用而 ...
- 4星|《财经》2018年第13期:年轻人大多从大三和大四起开始就从QQ向微信转移
<财经>2018年第13期 总第530期 旬刊 本期主要话题是快递业,其他我感兴趣的重要话题还有:香港9价HPV疫苗断供风波:华盛顿邮报被贝佐斯收购后这几年的变化:北京二中朝阳学校的划片风 ...
- Ryu学习总结(持续更新)
Ryu学习总结 该篇学习笔记,与其他分析Ryu控制器代码的笔记不同,主要按照程序的构成来进行分块总结,由于本人为新手入门,不能保证没有错误,如果发现错误,欢迎指教. 以下的内容主要来源: 源码 官方文 ...
- 性能度量RMSE
回归问题的典型性能度量是均方根误差(RMSE:Root Mean Square Error).如下公式. m为是你计算RMSE的数据集中instance的数量. x(i)是第i个实例的特征值向量 ,y ...
- Python常用模块之VideoCapture
官方网址:http://videocapture.sourceforge.net/ 功能介绍: VideoCapture是Win32版Python的一个扩展,可以访问视频采集设备(如USB摄像头) ...
- Scrum立会报告+燃尽图(十一月十七日总第二十五次):设计调查问卷;修复上一阶段bug
此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2284 项目地址:https://git.coding.net/zhang ...
- TensorFlow:NameError: name ‘input_data’ is not defined
在运行TensorFlow的MNIST实例时,第一步 import tensorflow.examples.tutorials.mnist.input_data mnist = input_data. ...
- c语言的知识与能力自评
知识与能力 C语言最早是由美国Bell实验室设计的,主要用作UNIX系统的工作语言,后来发展成为一种通用语言.C与UNIX有密切的关系,C最早是在PDP机器上用UNIX操作系统上开发的,后来又用C语言 ...
- nginx 配置文件简介
主配置文件说明(先将注释部分去掉:sed -ri ‘/^#|[[:space:]]+#/d’ /etc/nginx/nginx.conf) (1)全局配置段 1:指明运行worker进程的用户和组 u ...