题目链接

loj2541

题解

思路很妙啊, 人傻想不到啊

觉得十分难求,考虑容斥

由于\(1\)号可能不是最后一个被杀的,我们容斥一下\(1\)号之后至少有几个没被杀

我们令\(A = \sum\limits_{i = 1}^{n} w_i\),令\(S\)表示选出那几个在\(i\)之后的\(w_i\)和

我们淘汰人之后概率的分母就改变了,很不好求

我们考虑转化一下问题,每个人被杀后依旧存在,只不过再次选中他时再选一次,是等价的

那么此时那几个人在\(1\)之后的概率

\[\begin{aligned}
P &= \sum\limits_{i = 0}^{\infty} (1 - \frac{S + w_1}{A})^{i} \frac{w_1}{A} \\
&= \frac{w_1}{A}\sum\limits_{i = 0}^{\infty} (1 - \frac{S + w_1}{A})^{i} \\
&= \frac{w_1}{A} \times \frac{1}{1 - 1 + \frac{S + w_1}{A}} \\
&= \frac{w_1}{S + w_1}
\end{aligned}
\]

我们只需求出所有组合下该式的值即可

但这样显然很暴力

考虑到题目中\(\sum w_i \le 10^5\)的条件

我们求出各个\(S\)的系数和

注意到\(S\)是由\(w_i\)组合而成的,每有个\(w_i\)就乘上一个\(-1\)

容易发现每个\(w_i\)可以写成生成函数\((1 - x^{w_i})\)

那么我们只需求出\(\prod\limits_{i = 2}^{n} (1 - x^{w_i})\)

\(S\)的系数就是\(x^{S}\)的系数

分治\(NTT\)即可

令\(m = \sum\limits_{i = 2}^{n} w_i\),分治每一层的复杂度为\(O(mlogm)\)

总复杂度\(O(mlog^2m)\)

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 400005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
const int G = 3,P = 998244353;
inline int qpow(int a,LL b){
int re = 1;
for (; b; b >>= 1,a = 1ll * a * a % P)
if (b & 1) re = 1ll * re * a % P;
return re;
}
int R[maxn];
inline void NTT(int* a,int n,int f){
for (int i = 0; i < n; i++) if (i < R[i]) swap(a[i],a[R[i]]);
for (int i = 1; i < n; i <<= 1){
int gn = qpow(G,(P - 1) / (i << 1));
for (int j = 0; j < n; j += (i << 1)){
int g = 1,x,y;
for (int k = 0; k < i; k++,g = 1ll * g * gn % P){
x = a[j + k],y = 1ll * g * a[j + k + i] % P;
a[j + k] = (x + y) % P,a[j + k + i] = ((x - y) % P + P) % P;
}
}
}
if (f == 1) return;
int nv = qpow(n,P - 2); reverse(a + 1,a + n);
for (int i = 0; i < n; i++) a[i] = 1ll * a[i] * nv % P;
}
int A[30][maxn],deg[maxn],cnt;
int n,w[maxn];
void solve(int l,int r){
if (l == r){
++cnt;
deg[cnt] = w[l];
A[cnt][0] = 1; A[cnt][w[l]] = -1;
for (int i = 1; i < w[l]; i++) A[cnt][i] = 0;
return;
}
int mid = l + r >> 1;
solve(l,mid); solve(mid + 1,r);
int n = 1,L = 0,a = cnt - 1,b = cnt,m = deg[a] + deg[b];
while (n <= m) n <<= 1,L++;
for (int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
for (int i = deg[a] + 1; i < n; i++) A[a][i] = 0;
for (int i = deg[b] + 1; i < n; i++) A[b][i] = 0;
NTT(A[a],n,1); NTT(A[b],n,1);
for (int i = 0; i < n; i++) A[a][i] = 1ll * A[a][i] * A[b][i] % P;
NTT(A[a],n,-1);
cnt--; deg[cnt] = m;
}
int main(){
n = read();
if (n == 1){puts("1"); return 0;}
int sum = 0,ans = 0;
REP(i,n) w[i] = read(),sum += w[i]; sum -= w[1];
solve(2,n);
for (int i = 0; i <= sum; i++)
ans = (ans + 1ll * w[1] * A[1][i] % P * qpow(i + w[1],P - 2) % P) % P;
ans = (ans + P) % P;
printf("%d\n",ans);
return 0;
}

loj2541 「PKUWC2018」猎人杀 【容斥 + 分治NTT】的更多相关文章

  1. LOJ2541. 「PKUWC2018」猎人杀 [概率,分治NTT]

    传送门 思路 好一个神仙题qwq 首先,发现由于一个人死之后分母会变,非常麻烦,考虑用某种方法定住分母. 我们稍微改一改游戏规则:一个人被打死时只打个标记,并不移走,也就是说可以被打多次但只算一次.容 ...

  2. [LOJ2541]「PKUWC2018」猎人杀

    loj description 有\(n\)个猎人,每个猎人有一个仇恨度\(w_i\),每个猎人死后会开一枪打死一个还活着的猎人,打中每个猎人的概率与他的仇恨度成正比. 现在你开了第一枪,打死每个猎人 ...

  3. 「PKUWC2018」猎人杀

    「PKUWC2018」猎人杀 解题思路 首先有一个很妙的结论是问题可以转化为已经死掉的猎人继续算在概率里面,每一轮一直开枪直到射死一个之前没死的猎人为止. 证明,设所有猎人的概率之和为 \(W\) , ...

  4. LOJ #2541. 「PKUWC 2018」猎人杀(容斥 , 期望dp , NTT优化)

    题意 LOJ #2541. 「PKUWC 2018」猎人杀 题解 一道及其巧妙的题 , 参考了一下这位大佬的博客 ... 令 \(\displaystyle A = \sum_{i=1}^{n} w_ ...

  5. LOJ 2541 「PKUWC2018」猎人杀——思路+概率+容斥+分治

    题目:https://loj.ac/problem/2541 看了题解才会……有三点很巧妙. 1.分母如果变动,就很不好.所以考虑把操作改成 “已经选过的人仍然按 \( w_i \) 的概率被选,但是 ...

  6. 【LOJ】#2541. 「PKUWC2018」猎人杀

    题解 一道神仙的题>< 我们毙掉一个人后总的w的和会减少,怎么看怎么像指数算法 然而,我们可以容斥-- 设\(\sum_{i = 1}^{n} w_{i} = Sum\) 我们把问题转化一 ...

  7. loj#2541. 「PKUWC2018」猎人杀

    传送门 思路太清奇了-- 考虑容斥,即枚举至少有哪几个是在\(1\)号之后被杀的.设\(A=\sum_{i=1}^nw_i\),\(S\)为那几个在\(1\)号之后被杀的人的\(w\)之和.关于杀了人 ...

  8. LOJ #2541「PKUWC2018」猎人杀

    这样$ PKUWC$就只差一道斗地主了 假装补题补完了吧..... 这题还是挺巧妙的啊...... LOJ # 2541 题意 每个人有一个嘲讽值$a_i$,每次杀死一个人,杀死某人的概率为$ \fr ...

  9. [LOJ2541][PKUWC2018]猎人杀(容斥+分治+FFT)

    https://blog.csdn.net/Maxwei_wzj/article/details/80714129 n个二项式相乘可以用分治+FFT的方法,使用空间回收可以只开log个数组. #inc ...

随机推荐

  1. 写一个 setter 方法用于完成 @property (nonatomic, retain) NSString *name,

    写一个 setter 方法用于完成 @property (nonatomic, retain) NSString *name 写一个 setter 方法用于完成 @property (nonatomi ...

  2. 一起来做Chrome Extension《一些问题》

    目录 Unchecked runtime.lastError: The message port closed before a response wa received. 使用 eval Conte ...

  3. Redis的事物

    Redis的事物 Redis 事物常用命令 multi标记一个事物块的开始   exec:执行所有事物块内的命令   discard: 取消事物,放弃执行事物块的所有命令   watch key [k ...

  4. Keil5的设置

    目录 编码格式 字体大小 代码颜色 编码格式 有时候用keil打开工程的时候,发现中文注释是乱码的格式,这是因为编码格式方式不对造成的.可以通过设置不同的编码方式来解决. 点击Edit->Con ...

  5. Appium+python 自动发送邮件(2)(转)

    (原文:https://www.cnblogs.com/fancy0158/p/10056418.html) 移动端执行完测试case之后,通过邮件自动发送测试报告.大体流程如下: 1.通过unitt ...

  6. NodeJS实现同步的方法

    NodeJS被打上了单线程.非阻塞.事件驱动…..等标签. 在单线程的情况下,是无法开启子线程的.经过了很久的研究,发现并没有thread函数!!!但是有时候,我们确实需要“多线程”处理事务.node ...

  7. loadrunner socket协议问题归纳(0)

    一.概述         Loadrunner拥有极为丰富的工具箱,供予我们制造出各种奇妙魔法的能力.其中就有此次要讨论的socket套接字操作.     二.socket概述         soc ...

  8. 团队Alpha冲刺(三)

    目录 组员情况 组员1(组长):胡绪佩 组员2:胡青元 组员3:庄卉 组员4:家灿 组员5:凯琳 组员6:丹丹 组员7:家伟 组员8:政演 组员9:鸿杰 组员10:刘一好 组员11:何宇恒 展示组内最 ...

  9. C++ Primer Plus学习:第十五章

    第十五章 友元.异常和其他 友元 友元类 表 0-1 class Tv { public: friend class Remote; } Remote类可以使用Tv的数据成员,Remote类在Tv类后 ...

  10. PHP中普通属性和静态属性

    普通属性(实例属性): 实例的单词为:instance 实例,其实也叫做“对象”: 普通(实例)属性,就是一个可以在该类实例化出的对象上使用的属性! 定义形式: class  类名{ var  $属性 ...