本篇对于Python操作MySQL主要使用两种方式:

  • 原生模块 pymsql
  • ORM框架 SQLAchemy

一、pymysql

pymsql是Python中操作MySQL的模块,其使用方法和MySQLdb几乎相同。

下载安装

pip3 install pymysql

使用操作

1、执行SQL

 #!/usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql # 创建连接
conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='', db='t1')
# 创建游标
cursor = conn.cursor() # 执行SQL,并返回收影响行数
effect_row = cursor.execute("update hosts set host = '1.1.1.2'") # 执行SQL,并返回受影响行数
#effect_row = cursor.execute("update hosts set host = '1.1.1.2' where nid > %s", (1,)) # 执行SQL,并返回受影响行数
#effect_row = cursor.executemany("insert into hosts(host,color_id)values(%s,%s)", [("1.1.1.11",1),("1.1.1.11",2)]) # 提交,不然无法保存新建或者修改的数据
conn.commit() # 关闭游标
cursor.close()
# 关闭连接
conn.close()

2、获取新创建数据自增ID

 #!/usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='', db='t1')
cursor = conn.cursor()
cursor.executemany("insert into hosts(host,color_id)values(%s,%s)", [("1.1.1.11",1),("1.1.1.11",2)])
conn.commit()
cursor.close()
conn.close() # 获取最新自增ID
new_id = cursor.lastrowid

3、获取查询数据

 #!/usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='', db='t1')
cursor = conn.cursor()
cursor.execute("select * from hosts") # 获取第一行数据
row_1 = cursor.fetchone() # 获取前n行数据
# row_2 = cursor.fetchmany(3)
# 获取所有数据
# row_3 = cursor.fetchall() conn.commit()
cursor.close()
conn.close()

注:在fetch数据时按照顺序进行,可以使用cursor.scroll(num,mode)来移动游标位置,如:

  • cursor.scroll(1,mode='relative')  # 相对当前位置移动
  • cursor.scroll(2,mode='absolute') # 相对绝对位置移动

4、fetch数据类型

  关于默认获取的数据是元祖类型,如果想要或者字典类型的数据,即:

 #!/usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='', db='t1') # 游标设置为字典类型
cursor = conn.cursor(cursor=pymysql.cursors.DictCursor)
r = cursor.execute("call p1()") result = cursor.fetchone() conn.commit()
cursor.close()
conn.close()
     作业:
参考表结构:
用户类型 用户信息 权限 用户类型&权限
功能: # 登陆、注册、找回密码
# 用户管理
# 用户类型
# 权限管理
# 分配权限 特别的:程序仅一个可执行文件

练习题

注意:   (python代码操作数据库)

 import pymysql

 user = input("username:")
pwd = input("password:") conn = pymysql.connect(host="localhost",user='root',password='',database="db666")
cursor = conn.cursor()
sql = "select * from userinfo where username='%s' and password='%s'" %(user,pwd) #这段代码提到了注入问题,直接拼接会被他人任意登入,风险很大,所以不能这样写!
# select * from userinfo where username='uu' or 1=1 -- ' and password='%s' #这里就是利用了注入问题登入了数据库
cursor.execute(sql)
result = cursor.fetchone()
cursor.close()
conn.close() if result:
print('登录成功')
else:
print('登录失败')

sql注入问题(这种写法错误)

 import pymysql

 user = input("username:")
pwd = input("password:") conn = pymysql.connect(host="localhost",user='root',password='',database="db666")
cursor = conn.cursor()
sql = "select * from userinfo where username=%s and password=%s"
cursor.execute(sql,user,pwd)
# cursor.execute(sql,[user,pwd])
# cursor.execute(sql,{'u':user,'p':pwd})
result = cursor.fetchone()
cursor.close()
conn.close()
if result:
print('登录成功')
else:
print('登录失败')

正确的写法

二、SQLAchemy

SQLAlchemy是Python编程语言下的一款ORM框架,该框架建立在数据库API之上,使用关系对象映射进行数据库操作,简言之便是:将对象转换成SQL,然后使用数据API执行SQL并获取执行结果。

安装:

pip3 install SQLAlchemy

SQLAlchemy本身无法操作数据库,其必须以来pymsql等第三方插件,Dialect用于和数据API进行交流,根据配置文件的不同调用不同的数据库API,从而实现对数据库的操作,如:

 MySQL-Python
mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname> pymysql
mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>] MySQL-Connector
mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname> cx_Oracle
oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...] 更多详见:http://docs.sqlalchemy.org/en/latest/dialects/index.html

一、内部处理

使用 Engine/ConnectionPooling/Dialect 进行数据库操作,Engine使用ConnectionPooling连接数据库,然后再通过Dialect执行SQL语句。

 #!/usr/bin/env python
# -*- coding:utf-8 -*-
from sqlalchemy import create_engine engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5) # 执行SQL
# cur = engine.execute(
# "INSERT INTO hosts (host, color_id) VALUES ('1.1.1.22', 3)"
# ) # 新插入行自增ID
# cur.lastrowid # 执行SQL
# cur = engine.execute(
# "INSERT INTO hosts (host, color_id) VALUES(%s, %s)",[('1.1.1.22', 3),('1.1.1.221', 3),]
# ) # 执行SQL
# cur = engine.execute(
# "INSERT INTO hosts (host, color_id) VALUES (%(host)s, %(color_id)s)",
# host='1.1.1.99', color_id=3
# ) # 执行SQL
# cur = engine.execute('select * from hosts')
# 获取第一行数据
# cur.fetchone()
# 获取第n行数据
# cur.fetchmany(3)
# 获取所有数据
# cur.fetchall()

二、ORM功能使用

使用 ORM/Schema Type/SQL Expression Language/Engine/ConnectionPooling/Dialect 所有组件对数据进行操作。根据类创建对象,对象转换成SQL,执行SQL。

1、创建表

 #!/usr/bin/env python
# -*- coding:utf-8 -*-
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5) Base = declarative_base() # 创建单表
class Users(Base):
__tablename__ = 'users'
id = Column(Integer, primary_key=True)
name = Column(String(32))
extra = Column(String(16)) __table_args__ = (
UniqueConstraint('id', 'name', name='uix_id_name'),
Index('ix_id_name', 'name', 'extra'),
) # 一对多
class Favor(Base):
__tablename__ = 'favor'
nid = Column(Integer, primary_key=True)
caption = Column(String(50), default='red', unique=True) class Person(Base):
__tablename__ = 'person'
nid = Column(Integer, primary_key=True)
name = Column(String(32), index=True, nullable=True)
favor_id = Column(Integer, ForeignKey("favor.nid")) # 多对多
class Group(Base):
__tablename__ = 'group'
id = Column(Integer, primary_key=True)
name = Column(String(64), unique=True, nullable=False)
port = Column(Integer, default=22) class Server(Base):
__tablename__ = 'server' id = Column(Integer, primary_key=True, autoincrement=True)
hostname = Column(String(64), unique=True, nullable=False) class ServerToGroup(Base):
__tablename__ = 'servertogroup'
nid = Column(Integer, primary_key=True, autoincrement=True)
server_id = Column(Integer, ForeignKey('server.id'))
group_id = Column(Integer, ForeignKey('group.id')) def init_db():
Base.metadata.create_all(engine) def drop_db():
Base.metadata.drop_all(engine)

注:设置外检的另一种方式 ForeignKeyConstraint(['other_id'], ['othertable.other_id'])

2、操作表

 #!/usr/bin/env python
# -*- coding:utf-8 -*-
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5) Base = declarative_base() # 创建单表
class Users(Base):
__tablename__ = 'users'
id = Column(Integer, primary_key=True)
name = Column(String(32))
extra = Column(String(16)) __table_args__ = (
UniqueConstraint('id', 'name', name='uix_id_name'),
Index('ix_id_name', 'name', 'extra'),
) def __repr__(self):
return "%s-%s" %(self.id, self.name) # 一对多
class Favor(Base):
__tablename__ = 'favor'
nid = Column(Integer, primary_key=True)
caption = Column(String(50), default='red', unique=True) def __repr__(self):
return "%s-%s" %(self.nid, self.caption) class Person(Base):
__tablename__ = 'person'
nid = Column(Integer, primary_key=True)
name = Column(String(32), index=True, nullable=True)
favor_id = Column(Integer, ForeignKey("favor.nid"))
# 与生成表结构无关,仅用于查询方便
favor = relationship("Favor", backref='pers') # 多对多
class ServerToGroup(Base):
__tablename__ = 'servertogroup'
nid = Column(Integer, primary_key=True, autoincrement=True)
server_id = Column(Integer, ForeignKey('server.id'))
group_id = Column(Integer, ForeignKey('group.id'))
group = relationship("Group", backref='s2g')
server = relationship("Server", backref='s2g') class Group(Base):
__tablename__ = 'group'
id = Column(Integer, primary_key=True)
name = Column(String(64), unique=True, nullable=False)
port = Column(Integer, default=22)
# group = relationship('Group',secondary=ServerToGroup,backref='host_list') class Server(Base):
__tablename__ = 'server' id = Column(Integer, primary_key=True, autoincrement=True)
hostname = Column(String(64), unique=True, nullable=False) def init_db():
Base.metadata.create_all(engine) def drop_db():
Base.metadata.drop_all(engine) Session = sessionmaker(bind=engine)
session = Session() 表结构 + 数据库连接

表结构+数据库

 obj = Users(name="alex0", extra='sb')
session.add(obj)
session.add_all([
Users(name="alex1", extra='sb'),
Users(name="alex2", extra='sb'),
])
session.commit()

session.query(Users).filter(Users.id > 2).delete()
session.commit()

session.query(Users).filter(Users.id > 2).update({"name" : ""})
session.query(Users).filter(Users.id > 2).update({Users.name: Users.name + ""}, synchronize_session=False)
session.query(Users).filter(Users.id > 2).update({"num": Users.num + 1}, synchronize_session="evaluate")
session.commit()

ret = session.query(Users).all()
ret = session.query(Users.name, Users.extra).all()
ret = session.query(Users).filter_by(name='alex').all()
ret = session.query(Users).filter_by(name='alex').first()

其他

 # 条件
ret = session.query(Users).filter_by(name='alex').all()
ret = session.query(Users).filter(Users.id > 1, Users.name == 'eric').all()
ret = session.query(Users).filter(Users.id.between(1, 3), Users.name == 'eric').all()
ret = session.query(Users).filter(Users.id.in_([1,3,4])).all()
ret = session.query(Users).filter(~Users.id.in_([1,3,4])).all()
ret = session.query(Users).filter(Users.id.in_(session.query(Users.id).filter_by(name='eric'))).all()
from sqlalchemy import and_, or_
ret = session.query(Users).filter(and_(Users.id > 3, Users.name == 'eric')).all()
ret = session.query(Users).filter(or_(Users.id < 2, Users.name == 'eric')).all()
ret = session.query(Users).filter(
or_(
Users.id < 2,
and_(Users.name == 'eric', Users.id > 3),
Users.extra != ""
)).all() # 通配符
ret = session.query(Users).filter(Users.name.like('e%')).all()
ret = session.query(Users).filter(~Users.name.like('e%')).all() # 限制
ret = session.query(Users)[1:2] # 排序
ret = session.query(Users).order_by(Users.name.desc()).all()
ret = session.query(Users).order_by(Users.name.desc(), Users.id.asc()).all() # 分组
from sqlalchemy.sql import func ret = session.query(Users).group_by(Users.extra).all()
ret = session.query(
func.max(Users.id),
func.sum(Users.id),
func.min(Users.id)).group_by(Users.name).all() ret = session.query(
func.max(Users.id),
func.sum(Users.id),
func.min(Users.id)).group_by(Users.name).having(func.min(Users.id) >2).all() # 连表 ret = session.query(Users, Favor).filter(Users.id == Favor.nid).all() ret = session.query(Person).join(Favor).all() ret = session.query(Person).join(Favor, isouter=True).all() # 组合
q1 = session.query(Users.name).filter(Users.id > 2)
q2 = session.query(Favor.caption).filter(Favor.nid < 2)
ret = q1.union(q2).all() q1 = session.query(Users.name).filter(Users.id > 2)
q2 = session.query(Favor.caption).filter(Favor.nid < 2)
ret = q1.union_all(q2).all()

更多功能参见文档,猛击这里下载PDF

 。◕‿◕。笔记详细整理:ORM框架创建表和操作表

 #!/usr/bin/env python
# -*- coding:utf-8 -*- ########################### 对象关系映射(英语:(Object Relational Mapping,简称ORM ################################# from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index,CHAR,VARCHAR
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine Base = declarative_base() engine = create_engine("mysql+pymysql://root:@127.0.0.1:3306/s4day63?charset=utf8", max_overflow=5) # 创建单表 (如下创建了两个类,也就是两个表;类下面的内容就是表里的列)
class UserType(Base):
__tablename__ = 'usertype' #这一行是表名
id = Column(Integer, primary_key=True, autoincrement=True) #Colunm 列
title = Column(VARCHAR(32), nullable=True, index=True) class Users(Base):
__tablename__ = 'users' #这一行是表名
id = Column(Integer, primary_key=True, autoincrement=True)
name = Column(VARCHAR(32), nullable=True, index=True)
email = Column(VARCHAR(16), unique=True)
user_type_id = Column(Integer,ForeignKey("usertype.id")) # 联合唯一索引
# __table_args__ = (
# UniqueConstraint('id', 'name', name='uix_id_name'),
# Index('ix_n_ex','name', 'email',),
# ) def create_db():
Base.metadata.create_all(engine) #创建表 def drop_db():
Base.metadata.drop_all(engine) #删除表 # create_db() #调用创建表函数
# drop_db() #调用删除表函数 Session = sessionmaker(bind=engine)
session = Session() # 类 -> 代指的就是表
# 对象 -> 代指的就是行 # ###### 增 ######
# obj1 = UserType(title='普通用户') #向UserType表中插入1条数据
# session.add(obj1)
#
# objs =[ #向UserType表中插入多条数据
# UserType(title='超级用户'),
# UserType(title='白金用户'),
# UserType(title='黑金用户'),
# ]
# session.add_all(objs) # obj2 = Users(name='青铜') #向Users表中插入1条数据
# session.add(obj2)
#
# objs2 = [ #向Users表中插入多条数据
# Users(name='白银'),
# Users(name='黄金'),
# Users(name='铂金'),
# Users(name='钻石'),
# Users(name='大师'),
# Users(name='王者'),
# ]
# session.add_all(objs2) # ###### 查 ######
# print(session.query(UserType)) #查看表UserType,这里打印出来的是SQL语句
# user_type_list = session.query(UserType).all() #查看表UserType所有内容
# for row in user_type_list: #遍历表UserType所有内容
# print(row.id,row.title) #打印遍历结果中的id和title # #过滤查询,相当于where,设定查询条件,filter(过滤),这里意思是查询UserType里面的id和title,并且过滤条件为id>2的
# user_type_list = session.query(UserType.id,UserType.title).filter(UserType.id > 2)
# for row in user_type_list:
# print(row.id,row.title) # ###### 删除 ######
# session.query(UserType.id,UserType.title).filter(UserType.id > 2).delete() # ###### 修改 ######
#**********批量修改----这里批量修改title为黑金
# session.query(UserType.id,UserType.title).filter(UserType.id > 0).update({"title" : "黑金"}) #**********批量字符串类型修改----这里是批量在原title基础上+'aaa',加上的内容是字符串类型,修改对象也应是字符串类型
# session.query(UserType.id,UserType.title).filter(UserType.id > 0).update({UserType.title: UserType.title + "aaa"}, synchronize_session=False) #**********批量数字类型修改----这里是批量在原num基础上+'111',加上的内容是数字类型,修改对象也应是数字类型
# session.query(UserType.id,UserType.title).filter(UserType.id > 0).update({"num": Users.num + 111}, synchronize_session="evaluate") session.commit() #执行完提交
session.close() #关闭这次会话

ORM框架创建表和操作表

mysql数据库----python操作mysql ------pymysql和SQLAchemy的更多相关文章

  1. MySQL数据库4Python操作mysql、索引、慢查询日志

    目录 一.Python 操作 mysql 1.1python 操作 mysql 1.2查询数据 1.3增加(添加.更新)数据 1.4修改数据 1.5删除数据 1.6SQL注入问题 1.6.1问题的引入 ...

  2. 数据库-python操作mysql(pymsql)

    pymsql是Python中操作MySQL的模块,其使用方法和MySQLdb几乎相同 一:安装pymysql pip3 install pymysql 二:使用pytmysql # -*- codin ...

  3. python操作mysql数据库系列-操作MySql数据库(二)

    接口测试框架层级目录结构示意图: page目录下面的mysqlTest.py:存放的是mysql的操作代码 utils目录下面的helper.py:存放的是公共的配置方法 log目录log.md:存放 ...

  4. Mysql学习---Python操作Mysql 1231

    安装PyMysql 安装PyMysql:Py3默认自带pip3安装,Py2默认无pip命令 cmd进入PyCharm的安装目录完成安装 pip3 install pymysql 安装完成的位置:E:\ ...

  5. scrapy 管道里面使用mysql插入数据库 python操作mysql

    # -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to t ...

  6. Python使用MySQLConnector/Python操作MySQL、MariaDB数据库

    使用MySQL Connector/Python操作MySQL.MariaDB数据库   by:授客 QQ:1033553122 因目前MySQLdb并不支持python3.x,而MySQL官方已经提 ...

  7. Python(九) Python 操作 MySQL 之 pysql 与 SQLAchemy

    本文针对 Python 操作 MySQL 主要使用的两种方式讲解: 原生模块 pymsql ORM框架 SQLAchemy 本章内容: pymsql 执行 sql 增\删\改\查 语句 pymsql ...

  8. Python操作MySQL:pymysql和SQLAlchemy

    本篇对于Python操作MySQL主要使用两种方式: 原生模块 pymsql ORM框架 SQLAchemy pymsql pymsql是Python中操作MySQL的模块,其使用方法和MySQLdb ...

  9. python成长之路【第十三篇】:Python操作MySQL之pymysql

    对于Python操作MySQL主要使用两种方式: 原生模块 pymsql ORM框架 SQLAchemy pymsql pymsql是Python中操作MySQL的模块,其使用方法和MySQLdb几乎 ...

随机推荐

  1. jmeter执行顺序及作用域规则

    1.执行顺序 配置元件 前置处理器 定时器 采样器 后置处理器 断言 监听器 备注: 服务器响应为空的话后三个不执行 作用域内存在采样器时定时器.断言.前置/后置处理器才执行 逻辑控制器和采样器按照在 ...

  2. Linux中新增硬盘的分区,格式化与挂载

    Linux中新增硬盘的分区,格式化与挂载 本篇教程内容为怎样对Linux新增硬盘进行挂载,所以如果有准备新增硬盘但是有各种问题的,请参看本篇教程. 我们先说说什么是挂载? 我们知道Linux中的所有设 ...

  3. 【Shell 开发】Shell 目录

    目录 [第一章]Shell 概述 [第二章]Shell 变量 [第三章]Shell 变量的数值计算 [第四章]Shell 条件测试表达式 [shell 练习1]编写Shell条件句练习 [shell ...

  4. 剑指offer-二维数组中的查找01

    题目描述 在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数 ...

  5. 常用JDBC数据库驱动包和类名

    MySQL数据库: 1)驱动包:https://mvnrepository.com/artifact/mysql/mysql-connector-java(下载路径) 2)驱动类名:com.mysql ...

  6. [朴孝敏][Gold]

    歌词来源:http://music.163.com/#/song?id=406924220 作曲 : Ryan S. Jhun/David Quinones/Edwin Menjivar/Mateo ...

  7. [笔记] mysql5.6一些编译参数

    cmake \ -DCMAKE_INSTALL_PREFIX=/usr/local/mysql \ -DSYSCONFDIR=/etc \ -DWITH_INNOBASE_STORAGE_ENGINE ...

  8. ES6的新特性(7)——函数的扩展

    函数的扩展 函数参数的默认值 基本用法 ES6 之前,不能直接为函数的参数指定默认值,只能采用变通的方法. function log(x, y) { y = y || 'World'; console ...

  9. lintcode-129-重哈希

    129-重哈希 哈希表容量的大小在一开始是不确定的.如果哈希表存储的元素太多(如超过容量的十分之一),我们应该将哈希表容量扩大一倍,并将所有的哈希值重新安排.假设你有如下一哈希表: size=3, c ...

  10. lintcode-203-线段树的修改

    203-线段树的修改 对于一棵 最大线段树, 每个节点包含一个额外的 max 属性,用于存储该节点所代表区间的最大值. 设计一个 modify 的方法,接受三个参数 root. index 和 val ...