洛谷 [POI2007]BIU-Offices 解题报告
[POI2007]BIU-Offices
题意
给定\(n(\le 100000)\)个点\(m(\le 2000000)\)条边的无向图\(G\),求这个图\(G\)补图的连通块个数。
一开始想了半天各种啥啥啥优化补图连边。
但复杂度没算好,最开始\(\tt{set}\)的想法是可以通过此题的。
使用链表+队列可以做到\(O(n+m)\)的复杂度
具体流程如下:
- 将所有的点加入链表
- 从链表中随便拿出一个点加入队列,如果链表为空,结束
- 遍历队列
- 对于当前点,把\(\tt{Ta}\)的连接的边打标记。
- 遍历链表,取出没有打标记的点从链表中删去并加入队列。
- 取消标记。
- 在\(3\)中进入队列的点统计为一个连通块
考虑这样的复杂度为什么是\(O(n+m)\)的
每条边两边的点会被打一次标记并取消一次标记,并最多一次作为遍历链表时没有被删去的点,这里是\(O(m)\)的。
每个点最多会从链表中删去一次,这里是\(O(n)\)的。
Code:
#include <cstdio>
#include <algorithm>
const int N=1e5+10;
const int M=2e6+10;
int head[N],to[M<<1],Next[M<<1],cnt;
void add(int u,int v)
{
to[++cnt]=v,Next[cnt]=head[u],head[u]=cnt;
}
int n,m,pre[N],suc[N],q[N],l,r,ans[N],col[N],tot;
int main()
{
scanf("%d%d",&n,&m);
for(int u,v,i=1;i<=m;i++)
scanf("%d%d",&u,&v),add(u,v),add(v,u);
for(int i=1;i<=n;i++)
pre[i]=i-1,suc[i]=i+1;
suc[0]=1,suc[n]=0;
while(suc[0])
{
l=1,r=0;
q[++r]=suc[0];
suc[0]=suc[suc[0]];
pre[suc[q[r]]]=0;
while(l<=r)
{
int now=q[l++];
for(int i=head[now];i;i=Next[i])
col[to[i]]=1;
int cur=suc[0];
while(cur)
{
if(!col[cur])
{
q[++r]=cur;
pre[suc[cur]]=pre[cur];
suc[pre[cur]]=suc[cur];
}
cur=suc[cur];
}
for(int i=head[now];i;i=Next[i])
col[to[i]]=0;
}
ans[++tot]=l-1;
}
std::sort(ans+1,ans+1+tot);
printf("%d\n",tot);
for(int i=1;i<=tot;i++) printf("%d ",ans[i]);
return 0;
}
2018.11.8
洛谷 [POI2007]BIU-Offices 解题报告的更多相关文章
- 洛谷 P1783 海滩防御 解题报告
P1783 海滩防御 题目描述 WLP同学最近迷上了一款网络联机对战游戏(终于知道为毛JOHNKRAM每天刷洛谷效率那么低了),但是他却为了这个游戏很苦恼,因为他在海边的造船厂和仓库总是被敌方派人偷袭 ...
- 洛谷 P4597 序列sequence 解题报告
P4597 序列sequence 题目背景 原题\(\tt{cf13c}\)数据加强版 题目描述 给定一个序列,每次操作可以把某个数\(+1\)或\(-1\).要求把序列变成非降数列.而且要求修改后的 ...
- 洛谷1087 FBI树 解题报告
洛谷1087 FBI树 本题地址:http://www.luogu.org/problem/show?pid=1087 题目描述 我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全 ...
- 洛谷 P3527 [POI2011]MET-Meteors 解题报告
P3527 [POI2011]MET-Meteors 题意翻译 \(\tt{Byteotian \ Interstellar \ Union}\)有\(N\)个成员国.现在它发现了一颗新的星球,这颗星 ...
- 洛谷 P3349 [ZJOI2016]小星星 解题报告
P3349 [ZJOI2016]小星星 题目描述 小\(Y\)是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有\(n\)颗小星星,用\(m\)条彩色的细线串了起来,每条细线连着两颗小星星. 有一 ...
- 洛谷 P3177 树上染色 解题报告
P3177 [HAOI2015]树上染色 题目描述 有一棵点数为\(N\)的树,树边有边权.给你一个在\(0\) ~ \(N\)之内的正整数\(K\),你要在这棵树中选择\(K\)个点,将其染成黑色, ...
- 洛谷 P4705 玩游戏 解题报告
P4705 玩游戏 题意:给长为\(n\)的\(\{a_i\}\)和长为\(m\)的\(\{b_i\}\),设 \[ f(x)=\sum_{k\ge 0}\sum_{i=1}^n\sum_{j=1}^ ...
- 洛谷 P1272 重建道路 解题报告
P1272 重建道路 题目描述 一场可怕的地震后,人们用\(N\)个牲口棚\((1≤N≤150\),编号\(1..N\))重建了农夫\(John\)的牧场.由于人们没有时间建设多余的道路,所以现在从一 ...
- 洛谷 [HNOI2014]道路堵塞 解题报告
[HNOI2014]道路堵塞 题意 给一个有向图并给出一个这个图的一个\(1\sim n\)最短路,求删去这条最短路上任何一条边后的最短路. 又事SPFA玄学... 有个结论,新的最短路一定是\(1\ ...
- 洛谷 P1452 Beauty Contest 解题报告
P1452 Beauty Contest 题意 求平面\(n(\le 50000)\)个点的最远点对 收获了一堆计算几何的卡点.. 凸包如果不保留共线的点,在加入上凸壳时搞一个相对栈顶,以免把\(n\ ...
随机推荐
- selenium+Java,xpath定位方法详解(搬运留存)
用xpath绝对路径比较费事费力,还容易报错,下面几种模糊定位比较灵活好用 driver.findElement(By.xpath("//*[@id='J_login_form']/dl/d ...
- Unity FSM 有限状态机
翻译了一下unity wiki上对于有限状态机的案例,等有空时在详细写一下.在场景中添加两个游戏物体,一个为玩家并修改其Tag为Player,另一个为NPC为其添加NPCControl脚本,并为其将玩 ...
- 一学就会pip换镜像源
首先介绍一个国内好用的镜像站 阿里云 http://mirrors.aliyun.com/pypi/simple/ 豆瓣 http://pypi.douban.com/simple/ 清华大学 htt ...
- hive的内置函数和自定义函数
一.内置函数 1.一般常用函数 .取整函数 round() 当传入第二个参数则为精度 bround() 银行家舍入法:为5时,前一位为偶则舍,奇则进. .向下取整 floor() .向上取整 ceil ...
- css各种鼠标手型集合
比较齐全的鼠标手型css在国内的网站上是没搜到这么全的比如说哪个禁止的手型:鼠标往下移动即可看到效果: html代码如下: <h1>Cursors</h1> <div c ...
- python编辑用户登入界面
1.需求分析 登入界面需要达到以下要求: 系统要有登入和注册两个选项可供选择 系统要能够实现登入出错提示,比如账户密码错误等,用户信息保存在user_info.txt文件夹中 系统要能够进行登入错误次 ...
- Centos7下安装Seafile实现私有网盘
Seafile是一个开源.专业.可靠的云存储平台:解决文件集中存储.共享和跨平台访问等问题,由北京海文互知网络有限公司开发,发布于2012年10月:除了一般网盘所提供的云存储以及共享功能外,Seafi ...
- eos对数据库的操作
eosio的multi_index 概述 multi_index是eosio上的数据库管理接口,通过eosio::multi_index智能合约能够写入.读取和修改eosio数据库的数据 multi_ ...
- python3【基础】-装饰器
要理解充分理解python的装饰器,有充分理解下述三个知识点为前提: python作用域规则 函数即对象 闭包 一.python作用域规则: 首先介绍python中的作用域规则.python的作用域规 ...
- javascript提高篇
本章简介 本章内容比较少,有三个分享的知识.你可能都看过了,因为网上也有很多提问和解答,如果没看过或者没搞懂,你可以再看看这篇文章. 1. 数组去重方法的演变 -- 走向代码缩短化 2. [] ...