题目描述

给出如下定义:

  1. 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵。

例如,下面左图中选取第2、4行和第2、4、5列交叉位置的元素得到一个2*3的子矩阵如右图所示。

9 3 3 3 9

9 4 8 7 4

1 7 4 6 6

6 8 5 6 9

7 4 5 6 1

的其中一个2*3的子矩阵是

4 7 4

8 6 9

  1. 相邻的元素:矩阵中的某个元素与其上下左右四个元素(如果存在的话)是相邻的。

  2. 矩阵的分值:矩阵中每一对相邻元素之差的绝对值之和。

本题任务:给定一个n行m列的正整数矩阵,请你从这个矩阵中选出一个r行c列的子矩阵,使得这个子矩阵的分值最小,并输出这个分值。

(本题目为2014NOIP普及T4)

输入输出格式

输入格式:

第一行包含用空格隔开的四个整数n,m,r,c,意义如问题描述中所述,每两个整数之间用一个空格隔开。

接下来的n行,每行包含m个用空格隔开的整数,用来表示问题描述中那个n行m列的矩阵。

输出格式:

输出共1行,包含1个整数,表示满足题目描述的子矩阵的最小分值。

输入输出样例

输入样例#1:
复制

5 5 2 3
9 3 3 3 9
9 4 8 7 4
1 7 4 6 6
6 8 5 6 9
7 4 5 6 1
输出样例#1:
复制

6
输入样例#2:
复制

7 7 3 3
7 7 7 6 2 10 5
5 8 8 2 1 6 2
2 9 5 5 6 1 7
7 9 3 6 1 7 8
1 9 1 4 7 8 8
10 5 9 1 1 8 10
1 3 1 5 4 8 6
输出样例#2:
复制

16

说明

【输入输出样例1说明】

该矩阵中分值最小的2行3列的子矩阵由原矩阵的第4行、第5行与第1列、第3列、第4列交叉位置的元素组成,为

6 5 6

7 5 6

,其分值为

|6−5| + |5−6| + |7−5| + |5−6| + |6−7| + |5−5| + |6−6| =6。

【输入输出样例2说明】

该矩阵中分值最小的3行3列的子矩阵由原矩阵的第4行、第5行、第6行与第2列、第6列、第7列交叉位置的元素组成,选取的分值最小的子矩阵为

9 7 8 9 8 8 5 8 10

【数据说明】

对于50%的数据,1 ≤ n ≤ 12,1 ≤ m ≤ 12,矩阵中的每个元素1 ≤ a[i][j] ≤ 20;

对于100%的数据,1 ≤ n ≤ 16,1 ≤ m ≤ 16,矩阵中的每个元素1 ≤ a[i][j] ≤ 1,000,

1 ≤ r ≤ n,1 ≤ c ≤ m。

题解

理解题意,就是选出r行c列,将它们共有的元素重新组成一个矩阵,求出所谓的分值

我们先考虑暴力的做法:
枚举n中r行,m中c行,再更新答案,复杂度C(n,n/2) * C(m,m / 2) 铁定T

枚举两个不行,枚举一个还是可以承受的,我们枚举出n中的r行,再对m中的c列进行一次动归
我们设f[i][j]表示选到第i列【且第i列被选】已选了j列的最小分值
很明显我们就可以枚举i之前的k,f[i][j] = max{f[k][j - 1] + h[i] + d[i]}   【h[i]表示第i列上下之间的分值,d[i]表示第i列与第k列之间产生的分值,枚举算就好了】

边界的话首先j不能小于i,对于所有j == i,可以直接算出,就是全部选择,作为左边界就可以了


这道题主要呈现出一种搜索与dp相结合的思想

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define fo(i,x,y) for (int i = (x); i <= (y); i++)
#define Redge(u) for (int k = head[u]; k != -1; k = edge[k].next)
#define abs(x) ((x) > 0 ? (x) : -(x))
using namespace std;
const int maxn = 20,maxm = 100005,INF = 1000000000; inline int read(){
int out = 0,flag = 1;char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = out * 10 + c - 48; c = getchar();}
return out * flag;
} int s[maxn][maxn],n,m,r,c,ans = INF;
int R[maxn],f[maxn][maxn],h[maxn]; void init(){
n = read();
m = read();
r = read();
c = read();
REP(i,n) REP(j,m) s[i][j] = read();
} void cal(){
fill(f[0],f[0] + maxn * maxn,INF);
for(int j = 1; j <= m; j++){
h[j] = 0;
for (int i = 1; i <= r; i++){
if (i != 1) h[j] += abs(s[R[i]][j] - s[R[i - 1]][j]);
}
f[j][1] = h[j];
}
for (int i = 1; i <= m; i++)
for (int j = 2; j <= i && j <= c; j++){
for (int k = j - 1; k < i; k++){
int sum = 0;
REP(l,r) sum += abs(s[R[l]][i] - s[R[l]][k]);
f[i][j] = min(f[i][j],f[k][j - 1] + h[i] + sum);
}
}
for (int i = c; i <= m; i++)
if (f[i][c] < ans){
ans = f[i][c];
}
} void dfs(int u,int cnt){
if (cnt > r){
cal();
return;
}
int End = n - r + cnt;
fo(i,u + 1,End){
R[cnt] = i;
dfs(i,cnt + 1);
}
} int main()
{
init();
dfs(0,1);
cout<<ans<<endl;
return 0;
}

 

洛谷 P2258 子矩阵的更多相关文章

  1. 洛谷 P2258 子矩阵 解题报告

    P2258 子矩阵 题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第 2 . 4行和第 ...

  2. 洛谷P2258 子矩阵

    P2258 子矩阵 题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第2.4行和第2.4 ...

  3. 洛谷P2258 子矩阵[2017年5月计划 清北学堂51精英班Day1]

    题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第2.4行和第2.4.5列交叉位置的元素 ...

  4. 洛谷P2258 子矩阵 题解 状态压缩/枚举/动态规划

    作者:zifeiy 标签:状态压缩.枚举.动态规划 题目链接:https://www.luogu.org/problem/P2258 这道题目状态压缩是肯定的,我们需要用二进制来枚举状态. 江湖上有一 ...

  5. 洛谷P2258 子矩阵——题解

    题目传送 表示一开始也是一脸懵逼,虽然想到了DP,但面对多变的状态不知从何转移及怎么合理记录状态.之(借鉴大佬思路)后,豁然开朗,于是在AC后分享一下题解. 发现数据范围出奇地小,不过越是小的数据范围 ...

  6. [洛谷P2258][NOIP2014PJ]子矩阵(dfs)(dp)

    NOIP 2014普及组 T4(话说一道PJ组的题就把我卡了一个多小时诶) 这道题在我看第一次的时候是没有意识到这是一道DP题的,然后就摁着DFS敲了好长时间,结果敲了一个TLE 这是DP!!! 下面 ...

  7. 【洛谷P2258】子矩阵

    子矩阵 题目链接 搜索枚举选了哪几行,将DP降为一个一维的问题, 先预处理出w[i]表示该列上下元素差的绝对值之和 v[i][j]为第i列和第j列对应元素之差的绝对值之和 f[i][j]表示前j列中选 ...

  8. 题解 洛谷P2258 【子矩阵】

    应该很容易想到暴力骗分. 我们考虑暴力\(dfs\)枚举所有行的选择,列的选择,每次跑一遍记下分值即可. 时间复杂度:\(O(C_n^r \times C_m^c \times r \times c) ...

  9. BZOJ1084或洛谷2331 [SCOI2005]最大子矩阵

    BZOJ原题链接 洛谷原题链接 注意该题的子矩阵可以是空矩阵,即可以不选,答案的下界为\(0\). 设\(f[i][j][k]\)表示前\(i\)行选择了\(j\)个子矩阵,选择的方式为\(k\)时的 ...

随机推荐

  1. 基于Cocos2d-x-1.0.1的飞机大战游戏开发实例(下)

    在飞机大战游戏开发中遇到的问题和解决方法: 1.在添加菜单时,我要添加一个有背景的菜单,需要在菜单pMenu中添加一个图片精灵,结果编译过了但是运行出错,如下图: 查了很多资料,调试了很长时间,整个人 ...

  2. 05-Docker架构详解

    Docker 的核心组件包括: Docker 客户端 - Client Docker 服务器 - Docker daemon Docker 镜像 - Image Registry Docker 容器 ...

  3. appium自动化环境搭建

    1.java开发环境JDK 2.android SDK(platform/platform tools/tools/build tools) 3.python下载安装(pip) 4.appium下载安 ...

  4. VPS挂机赚美刀详细介绍–Alexamaster操作流程

    跟 vps 主机打交道时间长了,手里也渐渐积累了些闲置的 vps.让它们这么闲着吧,感觉有些浪费资源:用起来吧,暂时又没有好的项目.一直听说通过 vps挂机可以赚回主机成本,甚至可以盈利.正好这两天有 ...

  5. UUID.randomUUID()简单介绍

    UUID含义是通用唯一识别码 (Universally Unique Identifier),这 是一个软件建构的标准,也是被开源软件基金会 (Open Software Foundation, OS ...

  6. 城联数据TSM技术方案起底

    近日,城联数据有限公司与中国电信签订了<基于NFC技术的公交业务的合作协议>.双方基于NFC技术开展互联互通城市公交卡业务合作,实现符合住房和城乡建设部城市公用事业互联互通卡系列标准的移动 ...

  7. LCA最近公共祖先(Tarjan离线算法)

    这篇博客对Tarjan算法的原理和过程模拟的很详细. 转载大佬的博客https://www.cnblogs.com/JVxie/p/4854719.html 第二次更新,之前转载的博客虽然胜在详细,但 ...

  8. 欢迎来怼--第三十次Scrum会议

    一.小组信息 队名:欢迎来怼 小组成员 队长:田继平 成员:李圆圆,葛美义,王伟东,姜珊,邵朔,阚博文 小组照片 二.开会信息 时间:2017/11/18 17:20~17:53,总计33min. 地 ...

  9. 安装VS的过程

    软件工程学习到第三周,我们需要下载一个新的软件,用来进行软件测试.刚开始知道的时候觉得没甚么,不就是下个软件吗!有什么大不了的,分分钟搞定的事.可是想象很美好,现实很骨感.这是一个巨大的工作量呀,不仅 ...

  10. c# 调用c++dll二次总结

    1.pinvoke结构不对称,添加语句(网上有) 2.含回调函数,成员参数的结构体必须完全,尽管自己用不到. 3.加深对c++指针的理解.一般情况下,类型加*等效于c++中的ref.但对于short* ...