https://vjudge.net/problem/UVA-10375

题意:

输入整数p,q,r,s,计算C(p,q)/C(r,s)。

思路:

先打个素数表,然后用一个数组e来保存每个素数所对应的指数,最后相乘。

 #include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<cmath>
#include<map>
using namespace std; const int maxn=+; int primes[maxn];
int e[maxn];
int vis[maxn];
int p,q,r,s;
int cnt; void get_primes()
{
memset(vis,,sizeof(vis));
int m=sqrt(maxn+0.5);
for(int i=;i<=m;++i) if(!vis[i])
for(int j=i*i;j<=maxn;j+=i) vis[j]=;
cnt=;
for(int i=;i<=maxn;++i){
if(!vis[i])
primes[cnt++]=i;
}
} void add_integer(int n,int d )
{
for(int i=;i<cnt;i++)
{
while(n%primes[i]==)
{
n/=primes[i];
e[i]+=d;
}
if(n==) break;
}
} void update_e(int n,int d)
{
for(int i=;i<=n;i++)
add_integer(i,d);
} int main()
{
//freopen("D:\\input.txt","r",stdin);
get_primes();
while(~scanf("%d%d%d%d",&p,&q,&r,&s))
{
memset(e,,sizeof(e));
update_e(p,);
update_e(q,-);
update_e(p-q,-);
update_e(s,);
update_e(r-s,);
update_e(r,-);
double ans=;
for(int i=;i<cnt;i++)
{
ans*=pow(primes[i],e[i]);
}
printf("%.5f\n",ans);
}
return ;
}

UVa 10375 选择与除法(唯一分解定理)的更多相关文章

  1. Uva 10375 选择与除法 唯一分解定理

    题目链接:https://vjudge.net/contest/156903#problem/E 题意:已知 求:C(p,q)/C(r,s) 其中p,q,r,s都是10^4,硬算是肯定超数据类型的. ...

  2. UVA - 10375 Choose and divide[唯一分解定理]

    UVA - 10375 Choose and divide Choose and divide Time Limit: 1000MS   Memory Limit: 65536K Total Subm ...

  3. UVA.10791 Minimum Sum LCM (唯一分解定理)

    UVA.10791 Minimum Sum LCM (唯一分解定理) 题意分析 也是利用唯一分解定理,但是要注意,分解的时候要循环(sqrt(num+1))次,并要对最后的num结果进行判断. 代码总 ...

  4. UVa10375:选择与除法(唯一分解定理)

    The binomial coefficient C(m,n) is defined as Given four natural numbers p, q, r, and s, compute the th ...

  5. UVA 10375 Choose and divide【唯一分解定理】

    题意:求C(p,q)/C(r,s),4个数均小于10000,答案不大于10^8 思路:根据答案的范围猜测,不需要使用高精度.根据唯一分解定理,每一个数都可以分解成若干素数相乘.先求出10000以内的所 ...

  6. Irrelevant Elements UVA - 1635 二项式定理+组合数公式+素数筛+唯一分解定理

    /** 题目:Irrelevant Elements UVA - 1635 链接:https://vjudge.net/problem/UVA-1635 题意:給定n,m;題意抽象成(a+b)^(n- ...

  7. UVa 10791 Minimum Sum LCM【唯一分解定理】

    题意:给出n,求至少两个正整数,使得它们的最小公倍数为n,且这些整数的和最小 看的紫书--- 用唯一分解定理,n=(a1)^p1*(a2)^p2---*(ak)^pk,当每一个(ak)^pk作为一个单 ...

  8. 唯一分解定理(以Minimun Sum LCM UVa 10791为例)

    唯一分解定理是指任何正整数都可以分解为一些素数的幂之积,即任意正整数n=a1^p1*a2^p2*...*ai^pi:其中ai为任意素数,pi为任意整数. 题意是输入整数n,求至少2个整数,使得它们的最 ...

  9. Uva 10791 最小公倍数的最小和 唯一分解定理

    题目链接:https://vjudge.net/contest/156903#problem/C 题意:给一个数 n ,求至少 2个正整数,使得他们的最小公倍数为 n ,而且这些数之和最小. 分析: ...

随机推荐

  1. 高中生的IT之路-1.1自序

        近几年来越来越多的人问我关于 高中生要不要读大学.大学选择专业.毕业后的择业问题,索性我不如把我对这几方面的理解写出来,如果有幸能帮助到更多的人,那也算是个人对社会做出了一点贡献.       ...

  2. 【BZOJ3786】星系探索 DFS序+Splay

    [BZOJ3786]星系探索 Description 物理学家小C的研究正遇到某个瓶颈. 他正在研究的是一个星系,这个星系中有n个星球,其中有一个主星球(方便起见我们默认其为1号星球),其余的所有星球 ...

  3. c# 执行 CreateHandle() 时无法调用值 Dispose()

    在多线程C#开发中,遇到错误 执行 CreateHandle() 时无法调用值 Dispose().,这个错误是在关闭窗体的时候出来的. 原因是因为窗体还存在CreateHandle()事件,所以还不 ...

  4. SpringMVC XXX-servlet.xml ApplicationContext.xml

    因为直接使用了SpringMVC,所以之前一直不明白xxx-servlet.xml和applicationContext.xml是如何区别的,其实如果直接使用SpringMVC是可以不添加applic ...

  5. 编译安装基于nginx与lua的高性能web平台-openresty

    1.首先编译安装nginx(不多说) 2.开始安装openresty cd /usr/local/src wget https://openresty.org/download/openresty-1 ...

  6. 解决“The remote certificate is invalid according to the validation procedure”问题

    在用HttpClient发起https请求时,遭遇了“The remote certificate is invalid according to the validation procedure”异 ...

  7. Eclipse For Android 代码自动提示功能

    Eclipse for android 实现代码自动提示智能提示功能,介绍 Eclipse for android 编辑器中实现两种主要文件 java 与 xml 代码自动提示功能,解决 eclips ...

  8. 【Loadrunner】使用LoadRunner上传及下载文件

    使用LoadRunner上传及下载文件 1)LoadRunner上传文件 web_submit_data("importStudent.do", "Action=http ...

  9. Redhat 7改动默认执行级别方法 --RHEL7使用systemd创建符号链接指向默认执行级别

    今天装了下正式版的RHEL7,发现熟悉的inittab中没有了改动默认执行级别,打开inittab例如以下 [root@localhost init.d]# vi /etc/inittab # ini ...

  10. HDU5023:A Corrupt Mayor's Performance Art(线段树区域更新+二进制)

    http://acm.hdu.edu.cn/showproblem.php?pid=5023 Problem Description Corrupt governors always find way ...