题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3140


猜一发(显然)有结论:每次一定选择一个平面,即每次操作对答案的贡献都为$1$

首先可以考虑二维的情况。

二维不就是一个经典的最小点覆盖模型么,如果${(x,y)=1}$就把横纵轴上的点分别看为二分图的两边的点,最小点覆盖模型=最大匹配数。

三维?

${a*b*c<=5000}$显然${Max\left \{ a,b,c \right \}<=17}$
考虑枚举(搜索)最小的那一维,剩下的直接看(拍)成一个平面当成二维的做即可。


 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<cstdlib>
#include<cmath>
#include<cstring>
using namespace std;
#define maxn 1000100
#define llg long long
#define yyj(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
llg n,G,C,K,T,cnt,N,belong[maxn],bj[maxn]; vector<llg>a[maxn]; struct node
{
llg x,y,z;
}point[maxn]; void init()
{
llg x;
cnt=;
scanf("%lld%lld%lld",&C,&K,&G);
for (llg i=;i<=C;i++)
for (llg j=;j<=K;j++)
for (llg k=;k<=G;k++)
{
scanf("%lld",&x);
if (x) point[++cnt]=(node){i,j,k};
}
} bool find(llg x)
{
llg w=a[x].size(),v;
for (llg i=;i<w;i++)
{
v=a[x][i];
if (bj[v]) continue;
bj[v]=;
if (!belong[v] || find(belong[v]))
{
belong[v]=x; belong[x]=v;
return ;
}
}
return ;
} llg work(llg zt)
{
llg sum=; N=C+K;
for (llg i=;i<=N;i++) a[i].clear(),belong[i]=;
for (llg i=;i<G;i++) if ((zt&(<<i))==) sum++;
for (llg i=;i<=cnt;i++)
if (zt&(<<(point[i].z-)))
{
llg x=point[i].x,y=C+point[i].y;
a[x].push_back(y),a[y].push_back(x);
}
for (llg i=;i<=N;i++)
if (!belong[i])
{
for (llg j=;j<=N;j++) bj[j]=;
if (find(i)) sum++;
}
return sum;
} int main()
{
yyj("clear");
cin>>T;
while (T--)
{
init();
if (C<G) {swap(G,C); for (llg i=;i<=cnt;i++) swap(point[i].x,point[i].z); }
if (K<G) {swap(G,K); for (llg i=;i<=cnt;i++) swap(point[i].y,point[i].z); }
llg ans=(llg)1e16;
for (llg i=;i<(<<G);i++)
ans=min(work(i),ans);
printf("%lld\n",ans);
}
return ;
}

【BZOJ】3140: [Hnoi2013]消毒的更多相关文章

  1. bzoj 3140: [Hnoi2013]消毒

    3140: [Hnoi2013]消毒 Description 最近在生物实验室工作的小T遇到了大麻烦. 由于实验室最近升级的缘故,他的分格实验皿是一个长方体,其尺寸为a*b*c,a.b.c 均为正整数 ...

  2. 【刷题】BZOJ 3140 [Hnoi2013]消毒

    Description 最近在生物实验室工作的小T遇到了大麻烦. 由于实验室最近升级的缘故,他的分格实验皿是一个长方体,其尺寸为abc,a.b.c 均为正整数.为了实验的方便,它被划分为abc个单位立 ...

  3. BZOJ.3140.[HNOI2013]消毒(二分图匹配 匈牙利)

    题目链接 不难想到每次一定是切一片. 如果是平面,很容易想到直接做二分图匹配.对于3维的? 可以发现min(a,b,c)的最大值只有\(\sqrt[3]{n}≈17\),我们暴力枚举这一最小值代表的是 ...

  4. 3140:[HNOI2013]消毒 - BZOJ

    题目描述 Description 最近在生物实验室工作的小 T 遇到了大麻烦. 由于实验室最近升级的缘故,他的分格实验皿是一个长方体,其尺寸为 a*b*c,a.b.c均为正整数.为了实验的方便,它被划 ...

  5. [BZOJ3140][HNOI2013]消毒(二分图最小点覆盖)

    3140: [Hnoi2013]消毒 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1621  Solved: 676[Submit][Status] ...

  6. [BZOJ 3140] 消毒

    Link: BZOJ 3140 传送门 Solution: 挺好的一道暴力题 首先发现可以每次贪心选择宽度为1的一面,即$1*x*y,1*x*z,1*y*z$ 那么对于与该面垂直的面,相当于解决了一行 ...

  7. P3231 [HNOI2013]消毒

    P3231 [HNOI2013]消毒 二维覆盖我们已经很熟悉了 扩展到三维,枚举其中较小的一维,这里定义为$a$ 以$a$为关键字状压,$1$表示该面全选 剩下的面和二维覆盖一样二分图匹配 如果还没接 ...

  8. BZOJ 3140 消毒(最小顶点覆盖)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=3140 题意:最近在生物实验室工作的小T遇到了大麻烦. 由于实验室最近升级的缘故,他的分格 ...

  9. bzoj千题计划295:bzoj3140: [Hnoi2013]消毒

    http://www.lydsy.com/JudgeOnline/problem.php?id=3140 如果只有两维,那就是二分图最小点覆盖 现在是三维,但是a*b*c<=5000,说明最小的 ...

随机推荐

  1. How to use Nissan consult 3 plus to check, make key and program?

    How to use Nissan consult 3 plus to test Nissan? Firstly: get one particular Nissan consult 3 plus. ...

  2. nginx实现MySQL负载均衡

    默认Nginx只支持http的反向代理,要想nginx支持tcp的反向代理,还需要在编译时增加tcp代理模块支持,即nginx_tcp_proxy_module 下面操作步骤只让nginx支持tcp_ ...

  3. ubuntu数据库安装配置

    感谢原作者 http://www.linuxidc.com/Linux/2016-12/138081.htm

  4. django 存在则忽略, 不存在则创 TagSheet.objects.get_or_create(tag='test')

    django 存在则忽略, 不存在则创 TagSheet.objects.get_or_create(tag='test')

  5. django创建app、在视图函数及url中使用参数、url命名、通过redirect实现网页路径跳转

    app用来实现一个独立的功能,视图一般都写在app的view.py中,并且视图的第一个参数永远是request,视图的返回值必须是HttpResponseBase对象或子类的对象. 创建一个app:f ...

  6. mysql配置主从复制和常见问题

    克隆192.168.138.130(主库),修改后的ip为192.168.138.130(从库),修改131机器的/etc/udev/rules.d/70-persistent-net.rules,将 ...

  7. 运行android模拟器,emulator: ERROR: x86 emulation currently requires hardware acceleration!

    运行android模拟器,emulator: ERROR: x86 emulation currently requires hardware acceleration! 问题: 运行android模 ...

  8. zookeeper各种报错、原因及解决方法汇总(持续更新)

    [root@iZ23nn1p4mjZ zookeeper-3.4.10]# bin/zkCli.sh -server localhost:2181,localhost:2182,localhost:2 ...

  9. 做了 3 年企业级 SaaS,我收获的 10 点心得(转)

    关于中国企业级服务的总结不少,本土派和海外派都有出色的文章出来,VC 和创业者站在各自角度也有很多不错的总结.本文基于 Ping++ 近三年的创业历程而来,有弯路,有教训,有醒悟,也有心得.盛景 B2 ...

  10. 【题解】Luogu P1533 可怜的狗狗

    原题传送门 莫队介绍,Splay介绍 离线的题目,莫队是不错的解决方法 先把询问排一下序 剩下就套一个莫队的板子 每来一只狗就把漂亮值插入平衡树 每去掉一只狗就把漂亮值从平衡树中删掉 每次查询查平衡树 ...