Codeforces 994F Compute Power 二分+DP
题意:给n个任务 每个任务有两个值\(a,b\) 现有许多机器 每台最多可以执行两次任务 若存在第二次任务则满足\(a_{second}<a_{first}\) 定义代价\(val = \frac { \sum_{i \in S } a[i]} { \sum_{i \in S} b[i] }\) 其中\(S\)为当做第一次来执行的任务的集合 求\(val\)的最小值
\(n \leq 60,a_i \leq 10^8,b_i \leq 100\)
很容易想到二分最小值并且联想到经典的\(01\)分数规划 即
\(\frac {\sum_{i=1}^{n}a[i]}{\sum_{i=1}^{n}b[i]} \leq x\)
\({\sum_{i=1}^{n}a[i]} \leq x \times {\sum_{i=1}^{n}b[i]}\)
\({\sum_{i=1}^{n}a[i]}-x \times {\sum_{i=1}^{n}b[i]} \leq 0\)
\({\sum_{i=1}^{n} (a[i]-x \times b[i]) \leq 0}\)
顺着这个思路 我们来设计\(dp\)方程
先将任务按\(a\)降序排序
\(f[i][j][k]\)表示做到第\(i\)个有\(j\)个大于\(a_i\)的任务是当做第一次来做且没有被安排第二次有\(k\)个等于\(a_i\)的任务是当做第一次来做且没有被安排第二次
转移式为
\(f[i][j][k]=min(f[i+1][j-1][k],f[i+1][j+1][k]+a_i-x \times b_i )(a_i=a_{i+1})\)
\(f[i][j][k]=min(f[i+1][j+k-1][0],f[i+1][j+k-1][0]+a_i-x \times b_i) (a_i>a_{i+1})\)
\(dp\)之后只需要判定\(f[0][0][0] \leq 0\)是否满足来二分就好了
有个坑点是题目要求输出\(ceil(ans \times 1000)\) 我用\(google\)翻译出来却是把\(ans \times 1000\)四舍五入 以后还是读英文题面好了
#include<bits/stdc++.h>
using namespace std;
#define mod 1000000007
#define ll long long
#define cl(x) memset(x,0,sizeof x)
#ifdef Poi
#define bug(x) cout<<(#x)<<" "<<(x)<<endl
#define debug(...) fprintf(stderr, __VA_ARGS__)
#else
#define bug(x)
#define debug(...)
#endif
const int INF = 0x7fffffff;
const int N=55;
inline int read(){
int x=0,rev=0,ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')rev=1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return rev?-x:x;
}
struct data{
double a,b;
}t[N];
double X,f[N][N][N];
bool vis[N][N][N];
int n;
ll ans;
bool cmp(data i,data j){
return i.a>j.a;
}
double dfs(int pos,int d,int g){
if(pos==n) return 0;
if(vis[pos][d][g]) return f[pos][d][g];
vis[pos][d][g]=1;
double mn=INF;
if(pos<n-1&&t[pos].a==t[pos+1].a) {
if(d) mn=min(mn,dfs(pos+1,d-1,g));
mn=min(mn,dfs(pos+1,d,g+1)+t[pos].a-X*t[pos].b);
}
else if(t[pos].a!=t[pos+1].a||pos==n-1){
if(d) mn=min(mn,dfs(pos+1,d+g-1,0));
mn=min(mn,dfs(pos+1,d+g+1,0)+t[pos].a-X*t[pos].b);
}
return f[pos][d][g]=mn;
}
bool judge(double k){
X=k,cl(vis),cl(f);
return dfs(0,0,0)<=0;
}
int main(){
#ifdef Poi
freopen("in.txt","r",stdin);
#endif
n=read();
for(int i=0;i<n;i++) t[i].a=read();
// bug(t[n-1].a);
for(int i=0;i<n;i++) t[i].b=read();
if(t[0].a==99999991) {
// for(int i=0;i<n;i++) cout<<t[i].b<<endl;
}
sort(t,t+n,cmp);
double l=0,r=1e8;
for(int T=1;T<=100;T++){
double mid=(l+r)/2.0;
// bug(mid);
if(judge(mid)) r=mid;
else l=mid;
}
// bug(l);
ans=(ceil)(l*1000);
// printf("%.6lf\n",l);
cout<<ans<<endl;
}
Codeforces 994F Compute Power 二分+DP的更多相关文章
- Codeforces 660C - Hard Process - [二分+DP]
题目链接:http://codeforces.com/problemset/problem/660/C 题意: 给你一个长度为 $n$ 的 $01$ 串 $a$,记 $f(a)$ 表示其中最长的一段连 ...
- codeforces 808 E. Selling Souvenirs (dp+二分+思维)
题目链接:http://codeforces.com/contest/808/problem/E 题意:最多有100000个物品最大能放下300000的背包,每个物品都有权值和重量,为能够带的最大权值 ...
- 「学习笔记」wqs二分/dp凸优化
[学习笔记]wqs二分/DP凸优化 从一个经典问题谈起: 有一个长度为 \(n\) 的序列 \(a\),要求找出恰好 \(k\) 个不相交的连续子序列,使得这 \(k\) 个序列的和最大 \(1 \l ...
- 二分+DP HDU 3433 A Task Process
HDU 3433 A Task Process Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/ ...
- hdu 3433 A Task Process 二分+dp
A Task Process Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) T ...
- 2018.10.24 NOIP模拟 小 C 的数组(二分+dp)
传送门 考试自己yyyyyy的乱搞的没过大样例二分+dp二分+dp二分+dp过了606060把我自己都吓到了! 这么说来乱搞跟被卡常的正解比只少101010分? 那我考场不打其他暴力想正解血亏啊. 正 ...
- 【bzoj1044】[HAOI2008]木棍分割 二分+dp
题目描述 有n根木棍, 第i根木棍的长度为Li,n根木棍依次连结了一起, 总共有n-1个连接处. 现在允许你最多砍断m个连接处, 砍完后n根木棍被分成了很多段,要求满足总长度最大的一段长度最小, 并且 ...
- Luogu P2511 [HAOI2008]木棍分割 二分+DP
思路:二分+DP 提交:3次 错因:二分写萎了,$cnt$记录段数但没有初始化成$1$,$m$切的次数没有$+1$ 思路: 先二分答案,不提: 然后有个很$naive$的$DP$: 设$f[i][j] ...
- [BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆)
[BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆) 题面 一棵二叉树的所有点的点权都是给定的集合中的一个数. 让你求出1到m中所有权 ...
随机推荐
- java中printf()方法简单用法
%n 换行 相当于 \n %c 单个字符 %d 十进制整数 %u 无符号十进制数 %f 十进制浮点数 %o 八进制数 %x 十六进制数 %s 字符串 %% 输出百分号 > 在printf()方法 ...
- HTML表格的简单使用1
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- 018_nginx_proxy死循环问题
今天线上遇到一个请求一次,触发多次的请求,而且直接把nginx机器压垮了.经排查,经过如下: 一. server{ server www.jyall.com; location /latestrele ...
- ubuntu系统初始化网络及mysql配置
安装系统时需要安装open-ssh服务软件,否则无法远程连接 1.修改root密码 # sudo passwd 输入密码即可 切换到root用户,需要输入刚才的root密码 # su - 2.配置网络 ...
- linux块设备驱动
块设备驱动程序<1>.块设备和字符设备的区别1.读取数据的单元不同,块设备读写数据的基本单元是块,字符设备的基本单元是字节.2.块设备可以随机访问,字符设备只能顺序访问. 块设备的访问:当 ...
- 用命令打开本地tomcat服务器
1.点击开始菜单,搜索cmd,默认第一个结果是cmd.exe, 鼠标右键用管理员权限打开(win7及以上版本系统) 启动命令是net start tomcat8 (我电脑是tomcat8,如果是tom ...
- Python-浮动 清浮动
# 浮动布局 ## 一.display总结 ```css/* inline *//*1.同行显示, 就相当于纯文本, 当一行显示不下, 如就是一个字显示不下,那么显示不下的那一个字就会自动换行,和纯文 ...
- python 全栈开发,Day92(编程式的导航,vue页面布局,marked包的使用)
昨日内容回顾 1. 组件间的传值 1. bus --> 空Vue对象 通过向bus对象抛出自定义事件的方式在组件间传递信息 2. 注意事项: 1. bus.$on()应该在组件mounted(挂 ...
- ERP打印入库单(四十)
需求描述:此购进单的基本信息,购进单位,入库单位,入库时间……此购进单批号,产品名称,生产企业,等基本信息.实现能够循环加载打印.本单金额小计,整单金额合计计算.技术需求:界面设计,循环加载数据实现函 ...
- 浅析C语言的变量
参考资料 寄存器变量 用register声明的变量是寄存器变量,是存放在CPU的寄存器里的.而我们平时声明的变量是存放在内存中的.虽说内存的速度已经很快了,不过跟寄存器比起来还是差得远. 寄存器变量和 ...