BZOJ1053 [HAOI2007]反素数ant 数论
欢迎访问~原文出处——博客园-zhouzhendong
去博客园看该题解
传送门 - BZOJ1053
题目描述
(1<=N<=2,000,000,000)
题解
对于任何一个数 $p$ ,令 $p=\prod_\limits{i\in \{prime\} } i^{q_i}$ ,则总有 $ g(p)=\prod_\limits{i\in \{prime\} } (q_i+1)$ 。
命题1:如果 $p$ 是一个反素数,那么必然满足 $\forall i,j\in\{prime\} $ 如果 $i<j$ ,则 $q_i\geq q_j$ 。
我们可以简单的证明这一点。即:若 $q_i<q_j$ 则 $i^{q_i}j^{q_j}\geq i^{q_j}j^{q_i}$ ,所以至少存在一个数 $q^\prime$ ,在满足 $g(q)=g(q^\prime)$ 的情况下,使得 $q^\prime < q$ 。这与之前 “$q$ 是反素数” 的定义相悖,所以命题1 得证。
但是,可以见得,上述命题虽然具有充分性,但是不具有必要性。
譬如:
$a=2^13^15^1$
$b=2^35^1$
它们的因数个数都是 $8$ 。
由于我们在证明了命题1 之后,很容易发现可能的反素数非常少。所以我们只要暴搜就可以了。
建议判掉类似于上面举的例子的这种情况。
代码
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cmath>
using namespace std;
typedef long long LL;
const LL prime[]={,,,,,,,,,};
LL n,ans,cnt;
void dfs(LL times,int pos,int ysz,int maxv){
if (ysz>cnt)
ans=times,cnt=ysz;
else if (ysz==cnt&×<ans)
ans=times,cnt=ysz;
for (int i=;i<=maxv;i++){
times*=prime[pos];
if (times>n)
return;
dfs(times,pos+,ysz*(i+),i);
}
}
int main(){
scanf("%d",&n);
ans=cnt=;
dfs(,,,);
printf("%lld",ans);
return ;
}
BZOJ1053 [HAOI2007]反素数ant 数论的更多相关文章
- bzoj1053: [HAOI2007]反素数ant
51nod有一道类似的题...我至今仍然不会写暴搜!!! #include<cstdio> #include<cstring> #include<iostream> ...
- [BZOJ1053] [HAOI2007] 反素数ant (搜索)
Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数 ...
- BZOJ1053: [HAOI2007]反素数ant(爆搜)
Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4163 Solved: 2485[Submit][Status][Discuss] Descript ...
- bzoj千题计划296:bzoj1053: [HAOI2007]反素数ant
http://www.lydsy.com/JudgeOnline/problem.php?id=1053 求n以内约数个数最多的数 #include<cstdio> using names ...
- 【BZOJ1053】[HAOI2007]反素数ant 暴力
[BZOJ1053][HAOI2007]反素数ant Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) ...
- BZOJ 1053: [HAOI2007]反素数ant dfs
1053: [HAOI2007]反素数ant 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1053 Description 对于任何正整 ...
- 【BZOJ】1053: [HAOI2007]反素数ant
1053: [HAOI2007]反素数ant Description: g(x)表示x的约数个数,反素数:对于任意的i (i < x),均有g(i) < g(x),则x为反素数:现在输入不 ...
- bzoj 1053: [HAOI2007]反素数ant 搜索
1053: [HAOI2007]反素数ant Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1497 Solved: 821[Submit][Sta ...
- BZOJ 1053 [HAOI2007]反素数ant
1053: [HAOI2007]反素数ant Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1948 Solved: 1094[Submit][St ...
随机推荐
- luogu 1314 欧拉回路
欧拉路径:一笔画的路径 欧拉回路:一笔画的回路 两者判断方法一样但是输出略有不同.并且还有Fleury(弗罗莱)算法,但是我不会.. 这里就用dfs就好 判断条件: 1)图的连通性(可用并查集判断) ...
- MySQL中查询行数最多的表并且排序
#切换到schema use information_schema; #查询数据量最大的30张表 并排序 select table_name,table_rows from tables order ...
- CF115B Lawnmower(贪心)
CF115B Lawnmower \(solution:\) 很明显的一道贪心题,奇数行只能向左走,偶数行只能向右走,每一行的起点应该在上一行就已确定,而这一行的终点只和(这一行最后一棵草(相对于你走 ...
- vue axios全攻略
不再继续维护vue-resource,并推荐大家使用 axios 开始,axios 被越来越多的人所了解.本来想在网上找找详细攻略,突然发现,axios 的官方文档本身就非常详细!!有这个还要什么自行 ...
- proxysql 系列 ~ 总揽概括
一 简介: proxysql相关知识汇总 二 proxysql 相关报错 1 proxysql 报错 too many connections 分析 proxysql关于连接池的参数 ...
- 用代码生成UINavigationController 与UITabBarController相结合的简单QQ框架(部分)
首先我们需要搭建一个空的项目,当然xcode6.0以后不支持直接创建空项目,所以我们需要在系统生成项目之后,删除xcode自动给你生成的控制器和storyboard,另外需要在Main Interfa ...
- systemctl命令是系统服务管理器指令,它实际上将 service 和 chkconfig 这两个命令组合到一起。
1.centos 检查服务是否开机自启 (ntpd是原生的服务,mysql是注册的服务) 参考:1.http://man.linuxde.net/systemctl
- Django 利用管理器实现文章归档
Django管理器:class Manager 管理器是Django的模型进行数据库查询的接口,Django应用的每个模型都拥有至少一个管理器.默认情况下,Django为每个模型类添加一个名为obje ...
- Linux内核调试 - 一般人儿我都不告诉他(一)【转】
转自:http://www.cnblogs.com/armlinux/archive/2011/04/14/2396821.html 悄悄地进入Linux内核调试(一) 本文基址:http://blo ...
- 深入理解linux内核v4l2框架之videobuf2【转】
转自:https://blog.csdn.net/ramon1892/article/details/8444193 Videobuf2框架 1. 什么是videobuf2框架? 它是一个针对多媒体设 ...