对于hard negative mining的解释,引用一波知乎:

链接:https://www.zhihu.com/question/46292829/answer/235112564
来源:知乎

先要理解什么是hard negative

R-CNN关于hard negative mining的部分引用了两篇论文:

[17] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part based models. TPAMI, 2010.

[37] K. Sung and T. Poggio. Example-based learning for viewbased human face detection. Technical Report A.I. Memo No. 1521, Massachussets Institute of Technology, 1994. 4

Bootstrapping methods train a model with an initial subset of negative examples, and then collect negative examples that are incorrectly classified by this initial model to form a set of hard negatives. A new model is trained with the hard negative examples, and the process may be repeated a few times.

we use the following “bootstrap” strategy that incrementally selects only those “nonface” patterns with high utility value:
1) Start with a small set of “nonface” examples in the training database.
2) Train the MLP classifier with the current database of examples.
3) Run the face detector on a sequence of random images. Collect all the “nonface” patterns that the current system wrongly classifies as “faces” (see Fig. 5b).Add these “nonface” patterns to the training database as new negative examples.
4) Return to Step 2.

在bootstrapping方法中,我们先用初始的正负样本(一般是正样本+与正样本同规模的负样本的一个子集)训练分类器,然后再用训练出的分类器对样本进行分类,把其中错误分类的那些样本(hard negative)放入负样本集合,再继续训练分类器,如此反复,直到达到停止条件(比如分类器性能不再提升).

we expect these new examples to help steer the classifier away from its current mistakes.

hard negative就是每次把那些顽固的棘手的错误,再送回去继续练,练到你的成绩不再提升为止.这一个过程就叫做'hard negative mining'.

“Let’s say I give you a bunch of images that contain one or more people, and I give you bounding boxes for each one. Your classifier will need both positive training examples (person) and negative training examples (not person).

For each person, you create a positive training example by looking inside that bounding box. But how do you create useful negative examples? 
A good way to start is to generate a bunch of random bounding boxes, and for each that doesn’t overlap with any of your positives, keep that new box as a negative. 
Ok, so you have positives and negatives, so you train a classifier, and to test it out, you run it on your training images again with a sliding window. But it turns out that your classifier isn’t very good, because it throws a bunch of false positives (people detected where there aren’t actually people). 
A hard negative is when you take that falsely detected patch, and explicitly create a negative example out of that patch, and add that negative to your training set. When you retrain your classifier, it should perform better with this extra knowledge, and not make as many false positives.

a) Positive samples: apply the existing detection a t all positions and scales with a 50% overlap wit h the given bounding box and then select the hi ghest scoring placement. 
b) Negative samples:

hard negative, selected by finding high scoring detections in images not containing the target object.”

R-CNN的实现直接看代码:

rcnn/rcnn_train.m at master · rbgirshick/rcnn Line:214开始的函数定义

Hard Negative Mning的更多相关文章

  1. CVPR2019 | Libra R-CNN 论文解读

    作者 | 文永亮 学校 | 哈尔滨工业大学(深圳) 研究方向 | 目标检测.GAN 推荐理由 ​ 这是一篇发表于CVPR2019的paper,是浙江大学和香港中文大学的工作,这篇文章十分有趣,网友戏称 ...

  2. 探究负边距(negative margin)原理

    W3C规范在介绍margin时有这样一句话: Negative values for margin properties are allowed, but there may be implement ...

  3. hdu 1231, dp ,maximum consecutive sum of integers, find the boundaries, possibly all negative, C++ 分类: hdoj 2015-07-12 03:24 87人阅读 评论(0) 收藏

    the algorithm of three version below is essentially the same, namely, Kadane's algorithm, which is o ...

  4. 基本概率分布Basic Concept of Probability Distributions 4: Negative Binomial Distribution

    PDF version PMF Suppose there is a sequence of independent Bernoulli trials, each trial having two p ...

  5. Negative log-likelihood function

    Softmax function Softmax 函数 \(y=[y_1,\cdots,y_m]\) 定义如下: \[y_i=\frac{exp(z_i)}{\sum\limits_{j=1}^m{e ...

  6. Interleaving Positive and Negative Numbers

    Given an array with positive and negative integers. Re-range it to interleaving with positive and ne ...

  7. 编程范式 epesode2 negative values, float 精度

    episode2 //it is very interesting,an excellect teacher,  I love it 1,why negative is indicated the w ...

  8. hdu 5183. Negative and Positive (哈希表)

    Negative and Positive (NP) Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (Ja ...

  9. [LintCode] Interleaving Positive and Negative Numbers

    Given an array with positive and negative integers. Re-range it to interleaving with positive and ne ...

随机推荐

  1. 洛谷P4332 [SHOI2014]三叉神经树(LCT,树剖,二分查找,拓扑排序)

    洛谷题目传送门 你谷无题解于是来补一发 随便百度题解,发现了不少诸如树剖\(log^3\)LCT\(log^2\)的可怕描述...... 于是来想想怎么利用题目的性质,把复杂度降下来. 首先,每个点的 ...

  2. Java -- JDBC 学习--PreparedStatement

    可以通过调用 Connection 对象的 preparedStatement() 方法获取 PreparedStatement 对象.PreparedStatement 接口是 Statement ...

  3. intest

    /* ============================================================================ Name : http.c Author ...

  4. 洛谷P3230 比赛

    emmmmmm,这个之前讲课的原题居然出到比赛里了. 我怒肝2h+然后A了此题,结果还是被某高一巨佬吊打...... 题意:n个球队两两比赛,胜得3分,败得0分,平得1分. 现有一个总分表,求问可能的 ...

  5. A1060. Are They Equal

    If a machine can save only 3 significant digits, the float numbers 12300 and 12358.9 are considered ...

  6. vue-devtools chrome 开发工具

    1.github下载地址:https://github.com/vuejs/vue-devtools 有Git的同学直接 Git clone https://github.com/vuejs/vue- ...

  7. bin内置函数

    光棍们对1总是那么敏感,因此每年的11.11被戏称为光棍节.小Py光棍几十载,光棍自有光棍的快乐.让我们勇敢地面对光棍的身份吧,现在就证明自己:给你一个整数a,数出a在二进制表示下1的个数,并输出. ...

  8. Java基础-考察JVM内部结构的常用工具介绍

    Java基础-考察JVM内部结构的常用工具介绍 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 我们可以通过jvisualvm.exe考察jvm内部结构.而jvisualvm.exe ...

  9. 调用Bartender服务并打印bartender标签

    通常大部分企业在生产,仓储,QC等运作环节会用到标签,标签上有些各种标识. 一般的企业都有配有标签软件+专用的标签打印机.此例以bartender为例子. 如果为了实现打印条码,或者显示具体的功能,用 ...

  10. oracle job入门【原】

    oracle job入门 准备工作 先做一张学生表Table 表STUDENT create table STUDENT ( id INTEGER, name ), age INTEGER, crt_ ...