对于hard negative mining的解释,引用一波知乎:

链接:https://www.zhihu.com/question/46292829/answer/235112564
来源:知乎

先要理解什么是hard negative

R-CNN关于hard negative mining的部分引用了两篇论文:

[17] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part based models. TPAMI, 2010.

[37] K. Sung and T. Poggio. Example-based learning for viewbased human face detection. Technical Report A.I. Memo No. 1521, Massachussets Institute of Technology, 1994. 4

Bootstrapping methods train a model with an initial subset of negative examples, and then collect negative examples that are incorrectly classified by this initial model to form a set of hard negatives. A new model is trained with the hard negative examples, and the process may be repeated a few times.

we use the following “bootstrap” strategy that incrementally selects only those “nonface” patterns with high utility value:
1) Start with a small set of “nonface” examples in the training database.
2) Train the MLP classifier with the current database of examples.
3) Run the face detector on a sequence of random images. Collect all the “nonface” patterns that the current system wrongly classifies as “faces” (see Fig. 5b).Add these “nonface” patterns to the training database as new negative examples.
4) Return to Step 2.

在bootstrapping方法中,我们先用初始的正负样本(一般是正样本+与正样本同规模的负样本的一个子集)训练分类器,然后再用训练出的分类器对样本进行分类,把其中错误分类的那些样本(hard negative)放入负样本集合,再继续训练分类器,如此反复,直到达到停止条件(比如分类器性能不再提升).

we expect these new examples to help steer the classifier away from its current mistakes.

hard negative就是每次把那些顽固的棘手的错误,再送回去继续练,练到你的成绩不再提升为止.这一个过程就叫做'hard negative mining'.

“Let’s say I give you a bunch of images that contain one or more people, and I give you bounding boxes for each one. Your classifier will need both positive training examples (person) and negative training examples (not person).

For each person, you create a positive training example by looking inside that bounding box. But how do you create useful negative examples? 
A good way to start is to generate a bunch of random bounding boxes, and for each that doesn’t overlap with any of your positives, keep that new box as a negative. 
Ok, so you have positives and negatives, so you train a classifier, and to test it out, you run it on your training images again with a sliding window. But it turns out that your classifier isn’t very good, because it throws a bunch of false positives (people detected where there aren’t actually people). 
A hard negative is when you take that falsely detected patch, and explicitly create a negative example out of that patch, and add that negative to your training set. When you retrain your classifier, it should perform better with this extra knowledge, and not make as many false positives.

a) Positive samples: apply the existing detection a t all positions and scales with a 50% overlap wit h the given bounding box and then select the hi ghest scoring placement. 
b) Negative samples:

hard negative, selected by finding high scoring detections in images not containing the target object.”

R-CNN的实现直接看代码:

rcnn/rcnn_train.m at master · rbgirshick/rcnn Line:214开始的函数定义

Hard Negative Mning的更多相关文章

  1. CVPR2019 | Libra R-CNN 论文解读

    作者 | 文永亮 学校 | 哈尔滨工业大学(深圳) 研究方向 | 目标检测.GAN 推荐理由 ​ 这是一篇发表于CVPR2019的paper,是浙江大学和香港中文大学的工作,这篇文章十分有趣,网友戏称 ...

  2. 探究负边距(negative margin)原理

    W3C规范在介绍margin时有这样一句话: Negative values for margin properties are allowed, but there may be implement ...

  3. hdu 1231, dp ,maximum consecutive sum of integers, find the boundaries, possibly all negative, C++ 分类: hdoj 2015-07-12 03:24 87人阅读 评论(0) 收藏

    the algorithm of three version below is essentially the same, namely, Kadane's algorithm, which is o ...

  4. 基本概率分布Basic Concept of Probability Distributions 4: Negative Binomial Distribution

    PDF version PMF Suppose there is a sequence of independent Bernoulli trials, each trial having two p ...

  5. Negative log-likelihood function

    Softmax function Softmax 函数 \(y=[y_1,\cdots,y_m]\) 定义如下: \[y_i=\frac{exp(z_i)}{\sum\limits_{j=1}^m{e ...

  6. Interleaving Positive and Negative Numbers

    Given an array with positive and negative integers. Re-range it to interleaving with positive and ne ...

  7. 编程范式 epesode2 negative values, float 精度

    episode2 //it is very interesting,an excellect teacher,  I love it 1,why negative is indicated the w ...

  8. hdu 5183. Negative and Positive (哈希表)

    Negative and Positive (NP) Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (Ja ...

  9. [LintCode] Interleaving Positive and Negative Numbers

    Given an array with positive and negative integers. Re-range it to interleaving with positive and ne ...

随机推荐

  1. 【BZOJ4738/UOJ#276】汽水(点分治,分数规划)

    [BZOJ4738/UOJ#276]汽水(点分治,分数规划) 题面 BZOJ UOJ 题解 今天考试的题目,虽然说是写完了,但是感觉还是半懂不懂的来着. 代码基本照着\(Anson\)爷的码的,orz ...

  2. 【BZOJ2299】[HAOI2011]向量(数论)

    [BZOJ2299][HAOI2011]向量(数论) 题面 BZOJ 洛谷 题解 首先如果我们的向量的系数假装可以是负数,那么不难发现真正有用的向量只有\(4\)个,我们把它列出来.\((a,b)(a ...

  3. luogu4360 锯木厂选址 (斜率优化dp)

    设: sw[i]为1..i的w之和 sd[i]为1到i的距离 cost[i]为把第一个锯木厂建在i带来的花费 all[i,j]为把i..j所有木头运到j所需要的花费 所以$all[i,j]=cost[ ...

  4. Git Pull Github and Gitee or Gitlab

    GitHub实战系列汇总:http://www.cnblogs.com/dunitian/p/5038719.html 缩略Code:https://www.cnblogs.com/dotnetcra ...

  5. Linux安装aMule下载eDonkey200网络共享文件

    安装aMule 如果你的发行版本包管理器中包含amule和amule-daemon可以直接安装. 如果不包含需要在编译的Configure过程添加参数以包含amulecmd和amuled:./conf ...

  6. mysql 多表管理修改

    update t_res_ys,cms_article_data,cms_article set cms_article_data.jsdata=t_res_ys.jsdata ,cms_articl ...

  7. ffmpeg在asp.net 视频转换

    ffmpeg是一个源于Linux的工具软件,是FLV视频转换器,可以轻易地实现FLV向其它格式avi.asf. mpeg的转换或者将其它格式转换为flv.在视频播客中,我们通常使用它把我们上传的视频转 ...

  8. java常见面试题及三大框架面试

    Java基础方面: 1.作用域public,private,protected,以及不写时的区别 答:区别如下: 作用域 当前类 同一package 子孙类 其他package public √ √  ...

  9. Elasticsearch日志分析系统

    Elasticsearch日志分析系统 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.什么是Elasticsearch 一个采用Restful API标准的高扩展性的和高可用性 ...

  10. js的this到底是什么意思

    首先确定一点,this在声明时确定不了,在执行时才知道指向的谁!!! call() , apply(),bind()  方法的用法 比如下面一个例子: function fn(name,age){ a ...