[SDOI2010]古代猪文 (欧拉,卢卡斯,中国剩余)
[SDOI2010]古代猪文
$ solution: $
这道题感觉综合性极强,用到了许多数论中的知识:
- 质因子,约数,组合数
- 欧拉定理
- 卢卡斯定理
- 中国剩余定理
首先我们读题,发现题目需要我们枚举k(就是n的所有约数),并且对于每一个k都要用一个组合数算出其情况数(读题:不过具体是哪k分之一。这句话说明我们可以从n中取出任意k个字,所以情况数就是 $ C(_n^k) $ )(然后因为我们求的组合数范围有点大,所以需要用卢卡斯定理来求组合数(接下来我们会发现模数其实比较小))。但是这道题目把所有情况数(设有tot个情况),求为 $ G^{tot} $ 作答案输出。
众所周知,指数是不能直接取模的,所以我们要用到欧拉定理(注意欧拉定理建立在 $ gcd(G,999911659)=1 $ 的情况下,所以读入时要特判!)。
$ G{tot}=G{(tot\ mod \ \phi(P)+\phi(P))}\ mod(P) $
因为我们的模数为999911659(质数),所以我们其实就是要求这个东西:
$ G^{(tot\ mod \ 999911658+999911658)} $
但是我们发现虽然我们现在可以取模了,但是999911658并不是一个质数,而我们求tot的时候是需要用卢卡斯的,所以我们必须保证模数是一个质数且不能太大。所以我们又得用上中国剩余定理, $ 999911658=2\times 3\times 4679\times 35617 $
于是我们分别求出在 $ mod\ 2 \ ,mod\ 3,mod \ 4679,mod \ 35617 $ 意义下的所有tot,然后就需要中国剩余定理解出我们真正的 $ mod \ 999911658 $ 意义下的tot是多少,然后就可以直接搞快速幂求答案了!
$ code: $
#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#define ll long long
#define db double
#define mod 999911658
#define rg register int
using namespace std;
ll n,g,ans;
ll a[4];
ll jc[40005];
ll m[4]={2,3,4679,35617};
inline ll qr(){
char ch;
while((ch=getchar())<'0'||ch>'9');
ll res=ch^48;
while((ch=getchar())>='0'&&ch<='9')
res=res*10+(ch^48);
return res;
}
inline ll ksm(ll x,ll y,ll p){
ll res=1; x%=p;
while(y){
if(y&1)res=res*x%p;
x=x*x%p; y>>=1;
}return res;
}
inline ll c(ll x,ll y,ll p){ //组合数
if(x<y)return 0;
return jc[x]%p*ksm(jc[y],p-2,p)%p*ksm(jc[x-y],p-2,p)%p;//现求逆元
}
inline ll lc(ll x,ll y,ll p){ //卢卡斯
if(x<y)return 0; if(!x)return 1;
return c(x%p,y%p,p)*lc(x/p,y/p,p)%p;
}
int main(){
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
n=qr(); g=qr();
if(n==mod+1||g==mod+1){//特判
puts("0"); return 0;
}
for(rg k=0;k<4;++k){ jc[0]=jc[1]=1; //
for(rg i=2;i<=40000;++i)jc[i]=jc[i-1]*i%m[k]; //求出阶乘
for(rg i=1,j=sqrt(n);i<=j;++i){ //枚举约数
if(n%i!=0)continue;
a[k]=(a[k]+lc(n,i,m[k]))%m[k];
if(n==i*i)continue;
a[k]=(a[k]+lc(n,n/i,m[k]))%m[k];//n/i是较大的约数
}
}
for(rg i=0;i<4;++i)
ans=(ans+a[i]*(mod/m[i])%mod*ksm(mod/m[i],m[i]-2,m[i]))%mod;//中国剩余定理
printf("%lld\n",ksm(g,ans,mod+1));
return 0;
}
[SDOI2010]古代猪文 (欧拉,卢卡斯,中国剩余)的更多相关文章
- 【题解】P2480 [SDOI2010]古代猪文 - 卢卡斯定理 - 中国剩余定理
P2480 [SDOI2010]古代猪文 声明:本博客所有题解都参照了网络资料或其他博客,仅为博主想加深理解而写,如有疑问欢迎与博主讨论✧。٩(ˊᗜˋ)و✧*。 题目描述 猪王国的文明源远流长,博大精 ...
- BZOJ 1951: [Sdoi2010]古代猪文( 数论 )
显然答案是G^∑C(d,N)(d|N).O(N^0.5)枚举N的约数.取模的数999911659是质数, 考虑欧拉定理a^phi(p)=1(mod p)(a与p互质), 那么a^t mod p = a ...
- 1951: [Sdoi2010]古代猪文
1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 2171 Solved: 904[Submit][Status] ...
- BZOJ 1951: [Sdoi2010]古代猪文 [Lucas定理 中国剩余定理]
1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 2194 Solved: 919[Submit][Status] ...
- 洛咕 P2480 [SDOI2010]古代猪文
洛咕 P2480 [SDOI2010]古代猪文 题目是要求\(G^{\sum_{d|n}C^d_n}\). 用费马小定理\(G^{\sum_{d|n}C^d_n\text{mod 999911658} ...
- 【BZOJ1951】[SDOI2010]古代猪文
[BZOJ1951][SDOI2010]古代猪文 题面 bzoj 洛谷 题解 题目实际上是要求 $ G^{\sum d|n\;C_n^d}\;mod \; 999911659 $ 而这个奇怪的模数实际 ...
- 【BZOJ1951】[Sdoi2010]古代猪文 Lucas定理+CRT
[BZOJ1951][Sdoi2010]古代猪文 Description 求$X=\sum\limits_{d|n}C_n^d$,$Ans=G^X (\mod 999911659)$. Input 有 ...
- 洛谷 P2480 [SDOI2010]古代猪文 解题报告
P2480 [SDOI2010]古代猪文 题目背景 "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" ...
- 【bzoj1951】: [Sdoi2010]古代猪文 数论-中国剩余定理-Lucas定理
[bzoj1951]: [Sdoi2010]古代猪文 因为999911659是个素数 欧拉定理得 然后指数上中国剩余定理 然后分别lucas定理就好了 注意G==P的时候的特判 /* http://w ...
随机推荐
- CSS实现水平垂直同时居中的6种思路
前面的话 水平居中和垂直居中已经单独介绍过,本文将介绍水平垂直同时居中的6种思路 水平对齐+行高 [思路一]text-align + line-height实现单行文本水平垂直居中 <style ...
- IDEA 快捷键修改(长期更新)
最近误操作,导致idea的快捷键没了. 痛定思痛,打算记录一下,以前修改过的key map 搜索一下就好了: 1 代码格式化 -- reformat code:Ctrl+Alt+L(如果按了没反应, ...
- 【转载】LCT
原标题:LCT(Link-Cut Tree)详解(蒟蒻自留地) 出处:https://blog.csdn.net/saramanda/article/details/55253627 如果你还没有接触 ...
- 自学Linux Shell3.1-帮助命令man
点击返回 自学Linux命令行与Shell脚本之路 3.1-帮助命令man 1.man命令概述 默认bash shell提示符是美元符号($),这个符号表明shell在等待用户输入. Linux ma ...
- 自学Python3.2-函数分类(内置函数)
自学Python之路-Python基础+模块+面向对象自学Python之路-Python网络编程自学Python之路-Python并发编程+数据库+前端自学Python之路-django 自学Pyth ...
- 洛谷 P2746 [USACO5.3]校园网Network of Schools 解题报告
P2746 [USACO5.3]校园网Network of Schools 题目描述 一些学校连入一个电脑网络.那些学校已订立了协议:每个学校都会给其它的一些学校分发软件(称作"接受学校&q ...
- Nginx入门篇
Nginx 是一个高性能的 Web 和反向代理服务器, 它具有有很多非常优越的特性: 作为 Web 服务器:相比 Apache,Nginx 使用更少的资源,支持更多的并发连接,体现更高的效率,这点使 ...
- 【BZOJ1558】等差数列(线段树)
[BZOJ1558]等差数列(线段树) 题面 BZOJ 题解 可以说这道题已经非常毒瘤了 怎么考虑询问操作? 如果直接将一段数分解为等差数列? 太麻烦了.... 考虑相邻的数做差, 这样等差数列变为了 ...
- Qt程序ibus输入法不跟随
在Qt程序中ibus框架的输入法无法跟随光标所在的位置,会出现如图所示的效果. 解决方法 安装qt4-qtconfig和ibus-qt4. 运行qtconfig,在界面-XIM输入风格中,选择光标跟随 ...
- AtCoder Grand Contest 004 C - AND Grid
题意: 给出一张有紫色点的网格,构造一张红点网格和一张蓝点网格,使红蓝点的交集为紫色点. 保证网格四周没有紫色点. 构造一下,使蓝点和红点能够到每个点. #include<bits/stdc++ ...