<题目链接>

题目描述

给定一个 N 个点, M 条有向边的带非负权图,请你计算从 S 出发,到每个点的距离。

数据保证你能从 S 出发到任意点。

输入格式:

第一行为三个正整数 N,M,S 。 第二行起 M 行,每行三个非负整数 ui, vi, wi,表示从 ui到 vi​ 有一条权值为 wi​ 的边。

输出格式:

输出一行 N 个空格分隔的非负整数,表示 S 到每个点的距离。

1<=N<=100000

1<=M<=200000

解题分析:

由于n和m的数据太大,所以这里不能够用普通的dijkstra算法,因为它的复杂度为$O(n^2)$,所以我们这里要用的是复杂度为$O(mlog(n))$的加上堆优化的dijkstra算法。

 #include <bits/stdc++.h>
 using namespace std;

 #define INF 0x3f3f3f3f
 ;
 ;
 int head[N],dis[N],vis[N];
 int n,m,s,cnt;
 struct Edge{
     int to,val,next;
 }edge[M];
 void init(){
     cnt=;
     memset(head,-,sizeof(head));
 }
 void addedge(int u,int v,int w){
     edge[cnt].to=v,edge[cnt].val=w,edge[cnt].next=head[u];
     head[u]=cnt++;
 }
 struct Node{
     int index,dis;
     bool operator < (const Node & tmp)const{
         return dis>tmp.dis;    //由于要保证dis小的优先,所以将dis从大到小排序
     }
 }node[N];
 void Dij(int s){
     ;i<=n;i++)
         vis[i]=,node[i].index=i,node[i].dis=INF;
     priority_queue<Node>q;
     node[s].dis=;
     q.push(node[s]);
     while(!q.empty()){
         int u = q.top().index;q.pop();
         if(vis[u])continue;
         vis[u]=;
         for(int i=head[u];~i;i=edge[i].next){
             int v=edge[i].to;
             if(node[v].dis>node[u].dis+edge[i].val){   //更新以 u 为起点的,所有与它相连的线段的终点到s起点的最短距离
                 node[v].dis = node[u].dis+edge[i].val;
                 q.push(node[v]);  //由于更新了d[v].dis,所以所有以d[v].index为起点的边也要更新,所以将d[v]压入队列
             }
         }
     }
 }
 int main(){
     init();
     scanf("%d%d%d",&n,&m,&s);
     ;i<=m;i++){
         int u,v,c;scanf("%d%d%d",&u,&v,&c);
         addedge(u,v,c);
     }
     Dij(s);
     ;i<=n;i++){
         printf("%d%s",node[i].dis,i==n?"\n":" ");
     }
 }

2018-08-13

洛谷 P4779 【dijkstra】+(堆优化)+(链式前向星) (模板题)的更多相关文章

  1. 洛谷 P4779 :【模板】单源最短路径(标准版)(Dijkstra+堆优化+链式前向星)

    题目背景 2018 年 7 月 19 日,某位同学在 NOI Day 1 T1 归程 一题里非常熟练地使用了一个广为人知的算法求最短路. 然后呢? 100→60: Ag→Cu: 最终,他因此没能与理想 ...

  2. POJ - 1330 Nearest Common Ancestors 最近公共祖先+链式前向星 模板题

    A rooted tree is a well-known data structure in computer science and engineering. An example is show ...

  3. 洛谷P3371单源最短路径Dijkstra版(链式前向星处理)

    首先讲解一下链式前向星是什么.简单的来说就是用一个数组(用结构体来表示多个量)来存一张图,每一条边的出结点的编号都指向这条边同一出结点的另一个编号(怎么这么的绕) 如下面的程序就是存链式前向星.(不用 ...

  4. 单元最短路径算法模板汇总(Dijkstra, BF,SPFA),附链式前向星模板

    一:dijkstra算法时间复杂度,用优先级队列优化的话,O((M+N)logN)求单源最短路径,要求所有边的权值非负.若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的 ...

  5. Floyd && Dijkstra +邻接表 +链式前向星(真题讲解来源:城市路)

    1381:城市路(Dijkstra) 时间限制: 1000 ms         内存限制: 65536 KB提交数: 4066     通过数: 1163 [题目描述] 罗老师被邀请参加一个舞会,是 ...

  6. spfa+链式前向星模板

    #include<bits/stdc++.h> #define inf 1<<30 using namespace std; struct Edge{ int nex,to,w ...

  7. 【最短路】Dijkstra+ 链式前向星+ 堆优化(优先队列)

    Dijkstra+ 链式前向星+ 优先队列   Dijkstra算法 Dijkstra最短路算法,个人理解其本质就是一种广度优先搜索.先将所有点的最短距离Dis[ ]都刷新成∞(涂成黑色),然后从起点 ...

  8. 模板 Dijkstra+链式前向星+堆优化(非原创)

    我们首先来看一下什么是前向星.   前向星是一种特殊的边集数组,我们把边集数组中的每一条边按照起点从小到大排序,如果起点相同就按照终点从小到大排序, 并记录下以某个点为起点的所有边在数组中的起始位置和 ...

  9. HDU 2544最短路 【dijkstra 链式前向星+优先队列优化】

    最开始学最短路的时候只会用map二维数组存图,那个时候还不知道这就是矩阵存图,也不懂得效率怎么样 经过几个月的历练再回头看最短路的题, 发现图可以用链式前向星来存, 链式前向星的效率是比较高的.对于查 ...

随机推荐

  1. C语言文件操作详解

    C语言中没有输入输出语句,所有的输入输出功能都用 ANSI C提供的一组标准库函数来实现.文件操作标准库函数有: 文件的打开操作 fopen 打开一个文件 文件的关闭操作 fclose 关闭一个文件 ...

  2. django(一)验证码

    这里讲讲在django中使用第三方插件验证码的流程. 一. 先安装pillow, 通过 python -m pip install pillow 二.安装完后,在官方网站上看操作过程.地址:pillo ...

  3. qt无法使用终端启动的解决方法

    在Terminal中直接输入命令就能打开QtCreator, i.e. ~$ qtcreator 就可以打开Qt Creator了. 想完成这个功能的原因是,一般在Linux下打命令比较方便,而师兄给 ...

  4. Unity 发送游戏画面到 Winform

    一.首先看一下Unity界面: 设了2个摄像机,位置重叠,旋转相同,父子关系,在父摄像机上加上脚本A.cs,并将子摄像机复制给A脚本中的变量Cam: Cam用于为RenderTexture提供画面,P ...

  5. jenkins jar包上传maven仓库

    1      Jenkins 编译后部署至 Maven 仓库 jenkins编译后构件(如:jar包)部署至maven仓库需修改以下内容:maven 仓库配置:项目 pom 文件:本地仓库的 sett ...

  6. MariaDB:在Linux下修改编码

    参考网址:http://www.cnblogs.com/vingi/articles/4302330.html: # vi /etc/my.cnf [mysqld] init_connect='SET ...

  7. hdu 6125 状压dp+分组

    一道玄学题... 其实一开始想的是对的,优化一下就好了 首先我们会发现,乘积不能被完全平方数整除等价于所有因子的每个质因子个数和都至多为1 可是500以内的质数很多,全找出来会爆炸的 可我们会发现,如 ...

  8. js有关事件驱动

    事件驱动               /*                 什么是事件?                 1.事件发生了                 2.我要对这个事件做对应的处理 ...

  9. 委托Func和Action【转】

    平时我们如果要用到委托一般都是先声明一个委托类型,比如: private delegate string Say(); string说明适用于这个委托的方法的返回类型是string类型,委托名Say后 ...

  10. DOM树示意图