Problem Description
Steph is extremely obsessed with “sequence problems” that are usually seen on magazines: Given the sequence 11, 23, 30, 35, what is the next number? Steph always finds them too easy for such a genius like himself until one day Klay comes up with a problem and ask him about it.

Given two integer sequences {ai} and {bi} with the same length n, you are to find the next n numbers of {ai}: an+1…a2n. Just like always, there are some restrictions on an+1…a2n: for each number ai, you must choose a number bk from {bi}, and it must satisfy ai≤max{aj-j│bk≤j<i}, and any bk can’t be chosen more than once. Apparently, there are a great many possibilities, so you are required to find max{∑2nn+1ai} modulo 109+7 .

Now Steph finds it too hard to solve the problem, please help him.

 
Input
The input contains no more than 20 test cases.
For each test case, the first line consists of one integer n. The next line consists of n integers representing {ai}. And the third line consists of n integers representing {bi}.
1≤n≤250000, n≤a_i≤1500000, 1≤b_i≤n.
 
Output
For each test case, print the answer on one line: max{∑2nn+1ai} modulo 109+7。
 
Sample Input
4
8 11 8 5
3 1 4 2
 
Sample Output
27

Hint

For the first sample: 1. Choose 2 from {bi}, then a_2…a_4 are available for a_5, and you can let a_5=a_2-2=9;

2. Choose 1 from {bi}, then a_1…a_5 are available for a_6, and you can let a_6=a_2-2=9;
 
 
题意:给一个长度为n的a数组和b数组,然后给a在后面再填充n个数字,要求每次填充都是在b中选择一个数,设挑选的数为bx,设j为我目前要填充的数的序号,那么你填充的数就是a中序号从(bx)~(j-1)中最大的那个a[i]-i,最终使填充数的和最大。
题解:
1.要使最终结果最大的话,每次填充的数都尽可能的大,因为最先填的数减的数最小,所以对b来说先从小到大排序,能保证先填充的数最大。
2.为了维持每次挑选的是最大的数,可以用一个优先队列来维护,按照它的a[i]-i的值来进行排序。
3.最精华的地方,因为b已经排过序了,然后每次加的是最大的数,所以我只要保证队列的top的id要大于等于目前的b[i]即可。
 
每次用优先队列来维护最大最小值的题目我用sort来做超时一发的时候都觉得自己简直是太傻逼了///
为自己续一秒。。。

 #include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<string.h>
#include<queue>
#include<vector>
using namespace std; #define MOD 1000000000+7 struct node
{
long long num,ip,dis;
}; long long b[]; struct cmp
{
bool operator()(node q,node p)
{
return q.dis<p.dis;
}
}; int main()
{
long long n;
while(~scanf("%lld",&n))
{
priority_queue<node,vector<node>,cmp>Q;
node a;
for(int i=;i<=n;i++)
{
scanf("%lld",&a.num);
a.ip=i;
a.dis=a.num-a.ip;
Q.push(a);
}
for(int i=;i<=n;i++)
scanf("%lld",&b[i]);
sort(b+,b++n);
long long res=;
for(int i=;i<=n;i++)
{
while(Q.top().ip<b[i])
Q.pop();
node tmp=Q.top();
res+=tmp.dis;
res%=MOD;
tmp.ip=n+i;
tmp.num=tmp.dis;
tmp.dis-=tmp.ip;
Q.push(tmp);
}
printf("%lld\n",res);
}
return ;
}

HDU 6047 17多校 Maximum Sequence(优先队列)的更多相关文章

  1. HDU 6140 17多校8 Hybrid Crystals(思维题)

    题目传送: Hybrid Crystals Problem Description > Kyber crystals, also called the living crystal or sim ...

  2. HDU 6143 17多校8 Killer Names(组合数学)

    题目传送:Killer Names Problem Description > Galen Marek, codenamed Starkiller, was a male Human appre ...

  3. HDU 3130 17多校7 Kolakoski(思维简单)

    Problem Description This is Kolakosiki sequence: 1,2,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,2,1……. This seq ...

  4. HDU 6103 17多校6 Kirinriki(双指针维护)

    Problem Description We define the distance of two strings A and B with same length n isdisA,B=∑i=0n− ...

  5. HDU 6106 17多校6 Classes(容斥简单题)

    Problem Description The school set up three elective courses, assuming that these courses are A, B, ...

  6. HDU 6049 17多校2 Sdjpx Is Happy(思维题difficult)

    Problem Description Sdjpx is a powful man,he controls a big country.There are n soldiers numbered 1~ ...

  7. HDU 6045 17多校2 Is Derek lying?

    题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=6045 Time Limit: 3000/1000 MS (Java/Others)    Memory ...

  8. HDU 6124 17多校7 Euler theorem(简单思维题)

    Problem Description HazelFan is given two positive integers a,b, and he wants to calculate amodb. Bu ...

  9. HDU 6038 17多校1 Function(找循环节/环)

    Problem Description You are given a permutation a from 0 to n−1 and a permutation b from 0 to m−1. D ...

随机推荐

  1. 纯css实现顶部进度条随滚动条滚动

    <!DOCTYPE html> <head> <meta charset="utf-8"> <meta http-equiv=" ...

  2. upsource初探

    在JetBrains 的官网上,看到codereview的工具 upsource ,https://www.jetbrains.com/upsource/  官方的英文文档 来看下博客园上有博主简单的 ...

  3. C# 3.0 / C# 3.5 扩展方法

    概述 扩展方法是一种特殊的静态方法,可以像扩展类型上的实例方法一样进行调用,能向现有类型“添加”方法,而无须创建新的派生类型.重新编译或以其他方式修改原始类型. 扩展方法的定义实现: public s ...

  4. noip2014无线网络发射器选址

    题目描述 随着智能手机的日益普及,人们对无线网的需求日益增大.某城市决定对城市内的公共场所覆盖无线网. 假设该城市的布局为由严格平行的 129 条东西向街道和 129 条南北向街道所形成的网格状,并且 ...

  5. NOIP2016玩具谜题

    题目描述 小南有一套可爱的玩具小人, 它们各有不同的职业. 有一天, 这些玩具小人把小南的眼镜藏了起来. 小南发现玩具小人们围成了一个圈,它们有的面朝圈内,有的面朝圈外.如下图: 这时singersi ...

  6. POJ 2352 数星星

    Stars Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 53816   Accepted: 23159 Descripti ...

  7. java继承,final,super,Object类,toString,equals,

    Java中的内部类:成员内部类静态内部类方法内部类匿名内部类 内部类的主要作用如下: 1. 内部类提供了更好的封装,可以把内部类隐藏在外部类之内,不允许同一个包中的其他类访问该类 2. 内部类的方法可 ...

  8. linux basic test

    Linux 1◆ 提供连接     2◆ connection baidu.com 3◆ vm tools install Reboot    

  9. bzoj5016

    题解: 吧询问变成前缀形式 然后莫队 代码: #include<bits/stdc++.h> ; using namespace std; ]; ,L=,R=; ,Ans[N]; bool ...

  10. svn服务器搭建及使用(三)

    接下来,试试用TortoiseSVN修改文件,添加文件,删除文件,以及如何解决冲突等. 添加文件 在检出的工作副本中添加一个Readme.txt文本文件,这时候这个文本文件会显示为没有版本控制的状态, ...