(4运行例子)自己动手,编写神经网络程序,解决Mnist问题,并网络化部署
1、联通ColaB


# https://pypi.python.org/pypi/pydot
#!apt-get -qq install -y graphviz && pip install -q pydot
#import pydot
from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
from keras.utils import plot_model
import matplotlib.pyplot as plt
batch_size = 128
num_classes = 10
epochs = 12
#epochs = 2
# input image dimensions
img_rows, img_cols = 28, 28
# the data, shuffled and split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
#log = model.fit(X_train, Y_train,
# batch_size=batch_size, nb_epoch=num_epochs,
# verbose=1, validation_split=0.1)
log = model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
plt.figure('acc')
plt.subplot(2, 1, 1)
plt.plot(log.history['acc'],'r--',label='Training Accuracy')
plt.plot(log.history['val_acc'],'r-',label='Validation Accuracy')
plt.legend(loc='best')
plt.xlabel('Epochs')
plt.axis([0, epochs, 0.9, 1])
plt.figure('loss')
plt.subplot(2, 1, 2)
plt.plot(log.history['loss'],'b--',label='Training Loss')
plt.plot(log.history['val_loss'],'b-',label='Validation Loss')
plt.legend(loc='best')
plt.xlabel('Epochs')
plt.axis([0, epochs, 0, 1])
plt.show()

# https://pypi.python.org/pypi/pydot
#!apt-get -qq install -y graphviz && pip install -q pydot
#import pydot
from __future__ import print_function
import keras
from keras.datasets import fashion_mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
from keras.utils import plot_model
import matplotlib.pyplot as plt
batch_size = 128
num_classes = 10
epochs = 12
#epochs = 2
# input image dimensions
img_rows, img_cols = 28, 28
# the data, shuffled and split between train and test sets
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
#log = model.fit(X_train, Y_train,
# batch_size=batch_size, nb_epoch=num_epochs,
# verbose=1, validation_split=0.1)
log = model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
plt.figure('acc')
plt.subplot(2, 1, 1)
plt.plot(log.history['acc'],'r--',label='Training Accuracy')
plt.plot(log.history['val_acc'],'r-',label='Validation Accuracy')
plt.legend(loc='best')
plt.xlabel('Epochs')
plt.axis([0, epochs, 0.9, 1])
plt.figure('loss')
plt.subplot(2, 1, 2)
plt.plot(log.history['loss'],'b--',label='Training Loss')
plt.plot(log.history['val_loss'],'b-',label='Validation Loss')
plt.legend(loc='best')
plt.xlabel('Epochs')
plt.axis([0, epochs, 0, 1])
plt.show()

(4运行例子)自己动手,编写神经网络程序,解决Mnist问题,并网络化部署的更多相关文章
- (2编写网络)自己动手,编写神经网络程序,解决Mnist问题,并网络化部署
基于<神经网络和深度学习>这本绝好的教材提供的相关资料和代码,我们自己动手编写"随机取样的梯度下降神经网络".为了更好地说明问题,我们先从简单的开始: 1.sigmod ...
- (12网络化部署深化下)自己动手,编写神经网络程序,解决Mnist问题,并网络化部署
网络化部署一直是我非常想做的,现在已经基本看到了门路.今天早上实验,发现在手机上的支持也非常好(对于相机的支持还差一点),证明B/S结构的框架是非常有生命力的.下一步就是要将这个过程深化.总结,并且封 ...
- (13flask继续研究)自己动手,编写神经网络程序,解决Mnist问题,并网络化部署
解决3个问题: 1.自己实现一例flask项目: 2.在flask中,如何调用json传值: 3.进一步读懂现有代码. Flask 在整个系统中是作为一个后台框架,对外提供 api 服务,因此对它的理 ...
- (5keras自带的模型之间的关系)自己动手,编写神经网络程序,解决Mnist问题,并网络化部署
其中: 1.VGG 网络以及从 2012 年以来的 AlexNet 都遵循现在的基本卷积网络的原型布局:一系列卷积层.最大池化层和激活层,最后还有一些全连接的分类层. 2.ResNet 的作者将 ...
- (3网络化部署)自己动手,编写神经网络程序,解决Mnist问题,并网络化部署
我们使用google提供的colab,对我们现有的GoNetwork进行适当修改,利用网络资源进行运算. 一.什么是 Colaboratory? Colaboratory 是一款研究工具,用于进行机器 ...
- (6CBIR模拟问题)自己动手,编写神经网络程序,解决Mnist问题,并网络化部署
个方面: 最初的图像检索研究主要集中在如何选择合适的全局特征去描述图像内容和采用什么样的相似性度量方法进行图像匹配. 第二个研究热点是基于区域的图像检索方法,其主要思想是图像分割技术提取出图像中的物体 ...
- 关于《Spark快速大数据分析》运行例子遇到的报错及解决
一.描述 在书中第二章,有一个例子,构建完之后,运行: ${SPARK_HOME}/bin/spark-submit --class com.oreilly.learningsparkexamples ...
- 编写一个程序解决选择问题。令k=N/2。
import java.util.Arrays; /** * 选择问题,确定N个数中第K个最大值 * @author wulei * 将前k个数读进一个数组,冒泡排序(递减),再将剩下的元素逐个读入, ...
- 用python + hadoop streaming 编写分布式程序(二) -- 在集群上运行与监控
写在前面 相关随笔: Hadoop-1.0.4集群搭建笔记 用python + hadoop streaming 编写分布式程序(一) -- 原理介绍,样例程序与本地调试 用python + hado ...
随机推荐
- iOS UI基础-9.2 UITableView 简单微博列表
概述 我们要实现的效果: 这个界面布局也是UITableView实现的,其中的内容就是UITableViewCell,只是这个UITableViewCell是用户自定义实现的.虽然系统自带的UITab ...
- robot framework自定义python库
自定义python库的好处: robot framework填表式,将python的灵活性弄没了,但是不要担心,RF早就想到了解决办法,就是扩充自己的库. 1.在python应用程序包目录下创建一个新 ...
- 18.搭建 vue 环境
第一步 node环境安装 1.1 如果本机没有安装node运行环境,请下载node 安装包进行安装1.2 如果本机已经安装node的运行换,请更新至最新的node 版本下载地址:https://nod ...
- C++时间类型详解( time_t 和 tm )
原文:http://blog.csdn.net/love_gaohz/article/details/6637625 Unix时间戳(Unix timestamp),或称Unix时间(Unix tim ...
- JavaScript 字符串replace全局替换
一般使用replace let str = "2018-8-14"; str.replace('-','/')//2018/8-14 并没有替换第二个”-“, 所以我们用正则表达式 ...
- Discuz!代码大全
1.[ u]文字:在文字的位置可以任意加入您需要的字符,显示为下划线效果. 2.[ align=center]文字:在文字的位置可以任意加入您需要的字符,center位置center表示居中,left ...
- hdu4784
题意: 给了一个图 从1号节点走到N号节点,然后,每个地方有买卖盐的差价,然后求 到达N的最大价值,一旦走到N这个点就不能再走了,或者走到不能再别的世界走1和N这两个点,然后接下来 用一个 四维的数组 ...
- Java多线程-----创建线程的几种方式
1.继承Thread类创建线程 定义Thread类的子类,并重写该类的run()方法,该方法的方法体就是线程需要完成的任务,run()方法也称为线程执行体 创建Thread子类的实例,也就是创建 ...
- Keep On Movin (贪心)
#include<bits/stdc++.h> using namespace std; int main(){ int T, n, a;scanf("%d",& ...
- 【Scala学习之二】 Scala 集合 Trait Actor
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 scala-2.10.4(依赖jdk1.8) spark ...