推式子太快乐啦!虽然我好蠢而且dummy和maomao好巨(划掉)

思路

莫比乌斯反演的题目

首先这题有\(O(\sqrt n)\)的做法但是我没写咕咕咕

然后就是爆推一波式子

\[\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)
\]

\[\sum_{i=1}^{n}\sum_{j=1}^{m}\frac{i\times j}{gcd(i,j)}
\]

设$ gcd(i,j)=d$

\[\sum_{d=1}^{n}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}i\times j\times[gcd(i,j)=1]
\]

\[p_1=\lfloor\frac{n}{d}\rfloor\\ p_2=\lfloor\frac{m}{d}\rfloor
\]

设\(f(x)\)为满足条件\(1 \le i \le p_1\)且$1 \le j \le p_2 \(且\)[gcd(i,j)=x]\(的\)i\times j$的和

则可以推出\(F(x)\)为

\[F(x)=\sum_{x|d}f(d)
\]

所以\(F(x)\)为满足条件\(1 \le i \le p_1\)且$1 \le j \le p_2 \(且\)[x|gcd(i,j)]\(的\)i\times j$的和

所以

\[F(x)=x^2\times \sum_{i=1}^{\lfloor\frac{p_1}{x}\rfloor}i\times \sum_{j=1}^{\lfloor\frac{p_2}{x}\rfloor}j
\]

因为

\[f(x)=\sum_{x|d}\mu(\frac{d}{x})F(d)
\]

所以

\[f(x)=\sum_{x|d}\mu(\frac{d}{x})\times d^2 \times \sum_{i=1}^{\lfloor\frac{p_1}{d}\rfloor}i\times \sum_{j=1}^{\lfloor\frac{p_2}{d}\rfloor}j
\]

所以

\[f(x)=\sum_{t=1}\mu(t)\times (tx)^2 \times \sum_{i=1}^{\lfloor\frac{p_1}{tx}\rfloor}i\times \sum_{j=1}^{\lfloor\frac{p_2}{tx}\rfloor}j
\]

\[ans=\sum_{d=1}^{n}d\sum_{t=1}^{\lfloor\frac{n}{d}\rfloor}\mu(t)\times (t)^2 \times \sum_{i=1}^{\lfloor\frac{n}{td}\rfloor}i\times \sum_{j=1}^{\lfloor\frac{m}{td}\rfloor}j
\]

然后两个整除分块搞定,复杂度\(O(n)\)

然后dummy教了我一种新的计算方式

\[\sum_{d=1}^{n}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}i\times j\times[gcd(i,j)=1]
\]

发现[gcd(i,j)=1]的形式有点眼熟

直接把\(\mu\)带进去算

\[\sum_{d=1}^{n}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}i\times j\times \sum_{p|gcd(i,j)}\mu(p)
\]

算得

\[\sum_{d=1}^nd\sum_{p=1}^{\lfloor\frac{n}{d}\rfloor}p^2\mu(p)\sum_{i=1}^{\lfloor\frac{n}{dp}\rfloor}i\sum_{j=1}^{\lfloor\frac{n}{dp}\rfloor}j
\]

代码

#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int INV = 10050505;
const int MOD = 20101009;
int isprime[10010000],iprime[10010000],cnt,mu[10010000],summu[10010000],n,m;
void prime(int n){
isprime[n]=true;
mu[1]=1;
for(int i=2;i<=n;i++){
if(!isprime[i])
iprime[++cnt]=i,mu[i]=-1;
for(int j=1;j<=cnt&&iprime[j]*i<=n;j++){
isprime[iprime[j]*i]=true;
mu[iprime[j]*i]=-mu[i];
if(i%iprime[j]==0){
mu[iprime[j]*i]=0;
break;
}
}
}
for(int i=1;i<=n;i++)
summu[i]=(summu[i-1]%MOD+1LL*(mu[i]%MOD+MOD)%MOD*i%MOD*i%MOD)%MOD;
}
long long calc2(int n,int m){
long long ans=0;
for(int l=1,r;l<=min(n,m);l=r+1){
r=min(n/(n/l),m/(m/l));
ans=(ans%MOD+1LL*(summu[r]-summu[l-1]%MOD+MOD)%MOD*(1+n/l)%MOD*(n/l)%MOD*INV%MOD*(1+m/l)%MOD*(m/l)%MOD*INV%MOD)%MOD;
}
return ans;
}
long long calc1(int n,int m){
long long ans=0;
for(int l=1,r;l<=min(n,m);l=r+1){
r=min(n/(n/l),m/(m/l));
ans=(ans%MOD+1LL*(r-l+1)%MOD*(r+l)%MOD*INV%MOD*calc2(n/l,m/l)%MOD)%MOD;
}
return ans;
}
int main(){
prime(10001000);
scanf("%d %d",&n,&m);
if(n<m)
swap(n,m);
long long ans=calc1(n,m);
printf("%lld",ans);
}

P1829 [国家集训队]Crash的数字表格 / JZPTAB的更多相关文章

  1. [Luogu P1829] [国家集训队]Crash的数字表格 / JZPTAB (莫比乌斯反演)

    题面 传送门:洛咕 Solution 调到自闭,我好菜啊 为了方便讨论,以下式子\(m>=n\) 为了方便书写,以下式子中的除号均为向下取整 我们来颓柿子吧qwq 显然,题目让我们求: \(\l ...

  2. 洛谷 P1829 [国家集训队]Crash的数字表格 / JZPTAB 解题报告

    [国家集训队]Crash的数字表格 / JZPTAB 题意 求\(\sum\limits_{i=1}^n\sum\limits_{j=1}^mlcm(i,j)\),\(n,m\le 10^7\) 鉴于 ...

  3. 洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)

    题目背景 提示:原 P1829 半数集问题 已经迁移至 P1028 数的计算 题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a ...

  4. 洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)

    传送门 式子好麻烦orz……大佬好腻害orz->这里 //minamoto #include<iostream> #include<cstdio> #define ll ...

  5. P1829 [国家集训队]Crash的数字表格 / JZPTAB 莫比乌斯反演

    又一道...分数和取模次数成正比$qwq$ 求:$\sum_{i=1}^N\sum_{j=1}^Mlcm(i,j)$ 原式 $=\sum_{i=1}^N\sum_{j=1}^M\frac{i*j}{g ...

  6. 洛谷 P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)

    题意:求$\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)$. 开始开心(自闭)化简: $\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)$ =$\su ...

  7. 题解-[国家集训队]Crash的数字表格 / JZPTAB

    题解-[国家集训队]Crash的数字表格 / JZPTAB 前置知识: 莫比乌斯反演 </> [国家集训队]Crash的数字表格 / JZPTAB 单组测试数据,给定 \(n,m\) ,求 ...

  8. P1829 [国家集训队]Crash的数字表格

    P1829 [国家集训队]Crash的数字表格 原题传送门 前置芝士 莫比乌斯反演 乘法逆元 数论分块 正文 //补充:以下式子中的除法均为整除 由题目可以得知,这道题让我们所求的数,用一个式子来表达 ...

  9. 题解 P1829 【[国家集训队]Crash的数字表格 / JZPTAB】

    题目 我的第一篇莫比乌斯反演题解 兴奋兴奋兴奋 贡献一个本人自己想的思路,你从未看到过的船新思路 [分析] 显然,题目要求求的是 \(\displaystyle Ans=\sum_{i=1}^n\su ...

随机推荐

  1. HDU 1014 Uniform Generator(题解)

    Uniform Generator Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  2. 详解 ManualResetEvent(转)

    原文:http://www.cnblogs.com/li-peng/p/3291306.html 今天详细说一下ManualResetEvent 它可以通知一个或多个正在等待的线程已发生事件,允许线程 ...

  3. Azure Messaging-ServiceBus Messaging消息队列技术系列2-编程SDK入门

    各位,上一篇基本概念和架构中,我们介绍了Window Azure ServiceBus的消息队列技术的概览.接下来,我们进入编程模式和详细功能介绍模式,一点一点把ServiceBus技术研究出来. 本 ...

  4. python selenium设置chrome的下载路径

    python可以通过ChromeOptions设置chrome参数,如下载路径等,代码如下(python 3.6.7): #-*-coding=utf-8-*- from selenium impor ...

  5. (Review cs231n) Gradient Calculation and Backward

    ---恢复内容开始--- 昨日之补充web. 求解下图的梯度的流动,反向更新参数的过程,表示为 输入与损失梯度的关系,借助链式法则,当前输入与损失之间的梯度关系为局部梯度乘以后一层的梯度. ---恢复 ...

  6. POJ 2492 A Bug's Life (并查集)

    Background Professor Hopper is researching the sexual behavior of a rare species of bugs. He assumes ...

  7. 安装PG3.0详细教程附图

    从公司要求开始着手调研PG到今天上午都还不知道如何安装PG.. 囧的离谱.. 看了半天的PG官网 就这个网页我瞅了半天..对你没看错 半天 少说有10分钟..原谅我的英文不是非常好..但是我知道什么意 ...

  8. [转载]Oracle PL/SQL之LOOP循环控制语句

    在PL/SQL中可以使用LOOP语句对数据进行循环处理,利用该语句可以循环执行指定的语句序列.常用的LOOP循环语句包含3种形式:基本的LOOP.WHILE...LOOP和FOR...LOOP. LO ...

  9. [转载]Oracle左连接、右连接、全外连接以及(+)号用法

    Oracle  外连接(OUTER JOIN) 左外连接(左边的表不加限制) 右外连接(右边的表不加限制) 全外连接(左右两表都不加限制) 对应SQL:LEFT/RIGHT/FULL OUTER JO ...

  10. [转载]CSS各种居中方法

    水平居中的text-align:center 和 margin:0 auto   这两种方法都是用来水平居中的,前者是针对父元素进行设置而后者则是对子元素.他们起作用的首要条件是子元素必须没有被flo ...