P1829 [国家集训队]Crash的数字表格 / JZPTAB
推式子太快乐啦!虽然我好蠢而且dummy和maomao好巨(划掉)
思路
莫比乌斯反演的题目
首先这题有\(O(\sqrt n)\)的做法但是我没写咕咕咕
然后就是爆推一波式子
\]
\]
设$ gcd(i,j)=d$
\]
\]
设\(f(x)\)为满足条件\(1 \le i \le p_1\)且$1 \le j \le p_2 \(且\)[gcd(i,j)=x]\(的\)i\times j$的和
则可以推出\(F(x)\)为
\]
所以\(F(x)\)为满足条件\(1 \le i \le p_1\)且$1 \le j \le p_2 \(且\)[x|gcd(i,j)]\(的\)i\times j$的和
所以
\]
因为
\]
所以
\]
所以
\]
\]
然后两个整除分块搞定,复杂度\(O(n)\)
然后dummy教了我一种新的计算方式
\]
发现[gcd(i,j)=1]的形式有点眼熟
直接把\(\mu\)带进去算
\]
算得
\]
代码
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int INV = 10050505;
const int MOD = 20101009;
int isprime[10010000],iprime[10010000],cnt,mu[10010000],summu[10010000],n,m;
void prime(int n){
isprime[n]=true;
mu[1]=1;
for(int i=2;i<=n;i++){
if(!isprime[i])
iprime[++cnt]=i,mu[i]=-1;
for(int j=1;j<=cnt&&iprime[j]*i<=n;j++){
isprime[iprime[j]*i]=true;
mu[iprime[j]*i]=-mu[i];
if(i%iprime[j]==0){
mu[iprime[j]*i]=0;
break;
}
}
}
for(int i=1;i<=n;i++)
summu[i]=(summu[i-1]%MOD+1LL*(mu[i]%MOD+MOD)%MOD*i%MOD*i%MOD)%MOD;
}
long long calc2(int n,int m){
long long ans=0;
for(int l=1,r;l<=min(n,m);l=r+1){
r=min(n/(n/l),m/(m/l));
ans=(ans%MOD+1LL*(summu[r]-summu[l-1]%MOD+MOD)%MOD*(1+n/l)%MOD*(n/l)%MOD*INV%MOD*(1+m/l)%MOD*(m/l)%MOD*INV%MOD)%MOD;
}
return ans;
}
long long calc1(int n,int m){
long long ans=0;
for(int l=1,r;l<=min(n,m);l=r+1){
r=min(n/(n/l),m/(m/l));
ans=(ans%MOD+1LL*(r-l+1)%MOD*(r+l)%MOD*INV%MOD*calc2(n/l,m/l)%MOD)%MOD;
}
return ans;
}
int main(){
prime(10001000);
scanf("%d %d",&n,&m);
if(n<m)
swap(n,m);
long long ans=calc1(n,m);
printf("%lld",ans);
}
P1829 [国家集训队]Crash的数字表格 / JZPTAB的更多相关文章
- [Luogu P1829] [国家集训队]Crash的数字表格 / JZPTAB (莫比乌斯反演)
题面 传送门:洛咕 Solution 调到自闭,我好菜啊 为了方便讨论,以下式子\(m>=n\) 为了方便书写,以下式子中的除号均为向下取整 我们来颓柿子吧qwq 显然,题目让我们求: \(\l ...
- 洛谷 P1829 [国家集训队]Crash的数字表格 / JZPTAB 解题报告
[国家集训队]Crash的数字表格 / JZPTAB 题意 求\(\sum\limits_{i=1}^n\sum\limits_{j=1}^mlcm(i,j)\),\(n,m\le 10^7\) 鉴于 ...
- 洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)
题目背景 提示:原 P1829 半数集问题 已经迁移至 P1028 数的计算 题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a ...
- 洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)
传送门 式子好麻烦orz……大佬好腻害orz->这里 //minamoto #include<iostream> #include<cstdio> #define ll ...
- P1829 [国家集训队]Crash的数字表格 / JZPTAB 莫比乌斯反演
又一道...分数和取模次数成正比$qwq$ 求:$\sum_{i=1}^N\sum_{j=1}^Mlcm(i,j)$ 原式 $=\sum_{i=1}^N\sum_{j=1}^M\frac{i*j}{g ...
- 洛谷 P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)
题意:求$\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)$. 开始开心(自闭)化简: $\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)$ =$\su ...
- 题解-[国家集训队]Crash的数字表格 / JZPTAB
题解-[国家集训队]Crash的数字表格 / JZPTAB 前置知识: 莫比乌斯反演 </> [国家集训队]Crash的数字表格 / JZPTAB 单组测试数据,给定 \(n,m\) ,求 ...
- P1829 [国家集训队]Crash的数字表格
P1829 [国家集训队]Crash的数字表格 原题传送门 前置芝士 莫比乌斯反演 乘法逆元 数论分块 正文 //补充:以下式子中的除法均为整除 由题目可以得知,这道题让我们所求的数,用一个式子来表达 ...
- 题解 P1829 【[国家集训队]Crash的数字表格 / JZPTAB】
题目 我的第一篇莫比乌斯反演题解 兴奋兴奋兴奋 贡献一个本人自己想的思路,你从未看到过的船新思路 [分析] 显然,题目要求求的是 \(\displaystyle Ans=\sum_{i=1}^n\su ...
随机推荐
- HDU 1014 Uniform Generator(题解)
Uniform Generator Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- 详解 ManualResetEvent(转)
原文:http://www.cnblogs.com/li-peng/p/3291306.html 今天详细说一下ManualResetEvent 它可以通知一个或多个正在等待的线程已发生事件,允许线程 ...
- Azure Messaging-ServiceBus Messaging消息队列技术系列2-编程SDK入门
各位,上一篇基本概念和架构中,我们介绍了Window Azure ServiceBus的消息队列技术的概览.接下来,我们进入编程模式和详细功能介绍模式,一点一点把ServiceBus技术研究出来. 本 ...
- python selenium设置chrome的下载路径
python可以通过ChromeOptions设置chrome参数,如下载路径等,代码如下(python 3.6.7): #-*-coding=utf-8-*- from selenium impor ...
- (Review cs231n) Gradient Calculation and Backward
---恢复内容开始--- 昨日之补充web. 求解下图的梯度的流动,反向更新参数的过程,表示为 输入与损失梯度的关系,借助链式法则,当前输入与损失之间的梯度关系为局部梯度乘以后一层的梯度. ---恢复 ...
- POJ 2492 A Bug's Life (并查集)
Background Professor Hopper is researching the sexual behavior of a rare species of bugs. He assumes ...
- 安装PG3.0详细教程附图
从公司要求开始着手调研PG到今天上午都还不知道如何安装PG.. 囧的离谱.. 看了半天的PG官网 就这个网页我瞅了半天..对你没看错 半天 少说有10分钟..原谅我的英文不是非常好..但是我知道什么意 ...
- [转载]Oracle PL/SQL之LOOP循环控制语句
在PL/SQL中可以使用LOOP语句对数据进行循环处理,利用该语句可以循环执行指定的语句序列.常用的LOOP循环语句包含3种形式:基本的LOOP.WHILE...LOOP和FOR...LOOP. LO ...
- [转载]Oracle左连接、右连接、全外连接以及(+)号用法
Oracle 外连接(OUTER JOIN) 左外连接(左边的表不加限制) 右外连接(右边的表不加限制) 全外连接(左右两表都不加限制) 对应SQL:LEFT/RIGHT/FULL OUTER JO ...
- [转载]CSS各种居中方法
水平居中的text-align:center 和 margin:0 auto 这两种方法都是用来水平居中的,前者是针对父元素进行设置而后者则是对子元素.他们起作用的首要条件是子元素必须没有被flo ...