model.train方法的dataset_sink_mode参数设置为False时以step作为单位打印数据——(只在mode=context.GRAPH_MODE下成立,在mode=context.PYNATIVE_MODE模式下不成立)
如题:
官方中的内容支持:

使用summary功能时,建议将model.train方法的dataset_sink_mode参数设置为False,从而以step作为collect_freq参数的单位收集数据。当dataset_sink_mode为True时,将以epoch作为collect_freq的单位,此时建议手动设置collect_freq参数。collect_freq参数默认值为10。
从官方文档中我们可以知道:
如果model.train方法的dataset_sink_mode参数设置为False,那么就是以step为单位打印数据。
如果model.train方法的dataset_sink_mode参数设置为True,那么就是以episode为单位打印数据。
这里我们不过多解释,直接上代码:
(代码具体参看:https://www.cnblogs.com/devilmaycry812839668/p/14971668.html)
当 dataset_sink_mode=False 时:
model.train(epoch_size, ds_train, callbacks=[ckpoint_cb, LossMonitor(125)], dataset_sink_mode=False)

#!/usr/bin python
# encoding:UTF-8 """" 对输入的超参数进行处理 """
import os
import argparse """ 设置运行的背景context """
from mindspore import context """ 对数据集进行预处理 """
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.vision.c_transforms as CV
from mindspore.dataset.vision import Inter
from mindspore import dtype as mstype """ 构建神经网络 """
import mindspore.nn as nn
from mindspore.common.initializer import Normal """ 训练时对模型参数的保存 """
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig """ 导入模型训练需要的库 """
from mindspore.nn import Accuracy
from mindspore.train.callback import LossMonitor
from mindspore import Model parser = argparse.ArgumentParser(description='MindSpore LeNet Example')
parser.add_argument('--device_target', type=str, default="GPU", choices=['Ascend', 'GPU', 'CPU']) args = parser.parse_known_args()[0] # 为mindspore设置运行背景context
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) def create_dataset(data_path, batch_size=32, repeat_size=1,
num_parallel_workers=1):
# 定义数据集
mnist_ds = ds.MnistDataset(data_path)
resize_height, resize_width = 32, 32
rescale = 1.0 / 255.0
shift = 0.0
rescale_nml = 1 / 0.3081
shift_nml = -1 * 0.1307 / 0.3081 # 定义所需要操作的map映射
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR)
rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
rescale_op = CV.Rescale(rescale, shift)
hwc2chw_op = CV.HWC2CHW()
type_cast_op = C.TypeCast(mstype.int32) # 使用map映射函数,将数据操作应用到数据集
mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers) # 进行shuffle、batch、repeat操作
buffer_size = 10000
mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size)
mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
mnist_ds = mnist_ds.repeat(repeat_size) return mnist_ds class LeNet5(nn.Cell):
"""
Lenet网络结构
""" def __init__(self, num_class=10, num_channel=1):
super(LeNet5, self).__init__()
# 定义所需要的运算
self.conv1 = nn.Conv2d(num_channel, 6, 5, pad_mode='valid')
self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
self.fc1 = nn.Dense(16 * 5 * 5, 120, weight_init=Normal(0.02))
self.fc2 = nn.Dense(120, 84, weight_init=Normal(0.02))
self.fc3 = nn.Dense(84, num_class, weight_init=Normal(0.02))
self.relu = nn.ReLU()
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
self.flatten = nn.Flatten() def construct(self, x):
# 使用定义好的运算构建前向网络
x = self.conv1(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.conv2(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.flatten(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.relu(x)
x = self.fc3(x)
return x # 实例化网络
net = LeNet5() # 定义损失函数
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') # 定义优化器
net_opt = nn.Momentum(net.trainable_params(), learning_rate=0.01, momentum=0.9) # 设置模型保存参数
# 每125steps保存一次模型参数,最多保留15个文件
config_ck = CheckpointConfig(save_checkpoint_steps=125, keep_checkpoint_max=15)
# 应用模型保存参数
ckpoint = ModelCheckpoint(prefix="checkpoint_lenet", config=config_ck) def train_net(args, model, epoch_size, data_path, repeat_size, ckpoint_cb, sink_mode):
"""定义训练的方法"""
# 加载训练数据集
ds_train = create_dataset(os.path.join(data_path, "train"), 32, repeat_size)
model.train(epoch_size, ds_train, callbacks=[ckpoint_cb, LossMonitor(125)], dataset_sink_mode=sink_mode) def test_net(network, model, data_path):
"""定义验证的方法"""
ds_eval = create_dataset(os.path.join(data_path, "test"))
acc = model.eval(ds_eval, dataset_sink_mode=False)
print("{}".format(acc)) mnist_path = "./datasets/MNIST_Data"
train_epoch = 1
dataset_size = 1
model = Model(net, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
train_net(args, model, train_epoch, mnist_path, dataset_size, ckpoint, False)
test_net(net, model, mnist_path)
输出结果:
epoch: 1 step: 125, loss is 2.2959
epoch: 1 step: 250, loss is 2.2959309
epoch: 1 step: 375, loss is 2.2982068
epoch: 1 step: 500, loss is 2.2916625
epoch: 1 step: 625, loss is 2.3001077
epoch: 1 step: 750, loss is 1.9395046
epoch: 1 step: 875, loss is 0.728865
epoch: 1 step: 1000, loss is 0.2426785
epoch: 1 step: 1125, loss is 0.45475814
epoch: 1 step: 1250, loss is 0.1676599
epoch: 1 step: 1375, loss is 0.14273866
epoch: 1 step: 1500, loss is 0.030339874
epoch: 1 step: 1625, loss is 0.19792284
epoch: 1 step: 1750, loss is 0.09066871
epoch: 1 step: 1875, loss is 0.12958783
{'Accuracy': 0.9688501602564102}
当 dataset_sink_mode=True 时:
model.train(epoch_size, ds_train, callbacks=[ckpoint_cb, LossMonitor(125)], dataset_sink_mode=True)

#!/usr/bin python
# encoding:UTF-8 """" 对输入的超参数进行处理 """
import os
import argparse """ 设置运行的背景context """
from mindspore import context """ 对数据集进行预处理 """
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.vision.c_transforms as CV
from mindspore.dataset.vision import Inter
from mindspore import dtype as mstype """ 构建神经网络 """
import mindspore.nn as nn
from mindspore.common.initializer import Normal """ 训练时对模型参数的保存 """
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig """ 导入模型训练需要的库 """
from mindspore.nn import Accuracy
from mindspore.train.callback import LossMonitor
from mindspore import Model parser = argparse.ArgumentParser(description='MindSpore LeNet Example')
parser.add_argument('--device_target', type=str, default="GPU", choices=['Ascend', 'GPU', 'CPU']) args = parser.parse_known_args()[0] # 为mindspore设置运行背景context
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) def create_dataset(data_path, batch_size=32, repeat_size=1,
num_parallel_workers=1):
# 定义数据集
mnist_ds = ds.MnistDataset(data_path)
resize_height, resize_width = 32, 32
rescale = 1.0 / 255.0
shift = 0.0
rescale_nml = 1 / 0.3081
shift_nml = -1 * 0.1307 / 0.3081 # 定义所需要操作的map映射
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR)
rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
rescale_op = CV.Rescale(rescale, shift)
hwc2chw_op = CV.HWC2CHW()
type_cast_op = C.TypeCast(mstype.int32) # 使用map映射函数,将数据操作应用到数据集
mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers) # 进行shuffle、batch、repeat操作
buffer_size = 10000
mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size)
mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
mnist_ds = mnist_ds.repeat(repeat_size) return mnist_ds class LeNet5(nn.Cell):
"""
Lenet网络结构
""" def __init__(self, num_class=10, num_channel=1):
super(LeNet5, self).__init__()
# 定义所需要的运算
self.conv1 = nn.Conv2d(num_channel, 6, 5, pad_mode='valid')
self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
self.fc1 = nn.Dense(16 * 5 * 5, 120, weight_init=Normal(0.02))
self.fc2 = nn.Dense(120, 84, weight_init=Normal(0.02))
self.fc3 = nn.Dense(84, num_class, weight_init=Normal(0.02))
self.relu = nn.ReLU()
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
self.flatten = nn.Flatten() def construct(self, x):
# 使用定义好的运算构建前向网络
x = self.conv1(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.conv2(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.flatten(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.relu(x)
x = self.fc3(x)
return x # 实例化网络
net = LeNet5() # 定义损失函数
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') # 定义优化器
net_opt = nn.Momentum(net.trainable_params(), learning_rate=0.01, momentum=0.9) # 设置模型保存参数
# 每125steps保存一次模型参数,最多保留15个文件
config_ck = CheckpointConfig(save_checkpoint_steps=125, keep_checkpoint_max=15)
# 应用模型保存参数
ckpoint = ModelCheckpoint(prefix="checkpoint_lenet", config=config_ck) def train_net(args, model, epoch_size, data_path, repeat_size, ckpoint_cb, sink_mode):
"""定义训练的方法"""
# 加载训练数据集
ds_train = create_dataset(os.path.join(data_path, "train"), 32, repeat_size)
model.train(epoch_size, ds_train, callbacks=[ckpoint_cb, LossMonitor(125)], dataset_sink_mode=sink_mode) def test_net(network, model, data_path):
"""定义验证的方法"""
ds_eval = create_dataset(os.path.join(data_path, "test"))
acc = model.eval(ds_eval, dataset_sink_mode=False)
print("{}".format(acc)) mnist_path = "./datasets/MNIST_Data"
train_epoch = 1
dataset_size = 1
model = Model(net, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
train_net(args, model, train_epoch, mnist_path, dataset_size, ckpoint, True)
test_net(net, model, mnist_path)
输出结果:
epoch: 1 step: 1875, loss is 0.04107348
{'Accuracy': 0.9638421474358975}
==================================================================
可以看到在mindspore中进行训练时如果设置 dataset_sink_mode=True
那么无论设置多少step打印一次结果,每个epoch中只会打印一次结果,即一个epoch中最后的那个打印结果
(比如数据集中一个epoch是100个数据,batch_size=10, 一个epoch的数据训练需要10个steps, 如果设置dataset_sink_mode=True那么只会打印第10step的结果,前9次step的结果不打印)。
=====================================================================
经过进一步发现,上面的描述都是在 运行背景设置为:
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
下才成立的。
如果设置为:
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
那么,无论 dataset_sink_mode 设置为False 还是True , 都是执行 以step为单位打印数据。
代码如下:
#!/usr/bin python
# encoding:UTF-8 """" 对输入的超参数进行处理 """
import os
import argparse """ 设置运行的背景context """
from mindspore import context """ 对数据集进行预处理 """
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.vision.c_transforms as CV
from mindspore.dataset.vision import Inter
from mindspore import dtype as mstype """ 构建神经网络 """
import mindspore.nn as nn
from mindspore.common.initializer import Normal """ 训练时对模型参数的保存 """
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig """ 导入模型训练需要的库 """
from mindspore.nn import Accuracy
from mindspore.train.callback import LossMonitor
from mindspore import Model parser = argparse.ArgumentParser(description='MindSpore LeNet Example')
parser.add_argument('--device_target', type=str, default="GPU", choices=['Ascend', 'GPU', 'CPU']) args = parser.parse_known_args()[0] # 为mindspore设置运行背景context
context.set_context(mode=context.PYNATIVE_MODE, device_target=args.device_target) def create_dataset(data_path, batch_size=32, repeat_size=1,
num_parallel_workers=1):
# 定义数据集
mnist_ds = ds.MnistDataset(data_path)
resize_height, resize_width = 32, 32
rescale = 1.0 / 255.0
shift = 0.0
rescale_nml = 1 / 0.3081
shift_nml = -1 * 0.1307 / 0.3081 # 定义所需要操作的map映射
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR)
rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
rescale_op = CV.Rescale(rescale, shift)
hwc2chw_op = CV.HWC2CHW()
type_cast_op = C.TypeCast(mstype.int32) # 使用map映射函数,将数据操作应用到数据集
mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers) # 进行shuffle、batch、repeat操作
buffer_size = 10000
mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size)
mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
mnist_ds = mnist_ds.repeat(repeat_size) return mnist_ds class LeNet5(nn.Cell):
"""
Lenet网络结构
""" def __init__(self, num_class=10, num_channel=1):
super(LeNet5, self).__init__()
# 定义所需要的运算
self.conv1 = nn.Conv2d(num_channel, 6, 5, pad_mode='valid')
self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
self.fc1 = nn.Dense(16 * 5 * 5, 120, weight_init=Normal(0.02))
self.fc2 = nn.Dense(120, 84, weight_init=Normal(0.02))
self.fc3 = nn.Dense(84, num_class, weight_init=Normal(0.02))
self.relu = nn.ReLU()
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
self.flatten = nn.Flatten() def construct(self, x):
# 使用定义好的运算构建前向网络
x = self.conv1(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.conv2(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.flatten(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.relu(x)
x = self.fc3(x)
return x # 实例化网络
net = LeNet5() # 定义损失函数
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') # 定义优化器
net_opt = nn.Momentum(net.trainable_params(), learning_rate=0.01, momentum=0.9) # 设置模型保存参数
# 每125steps保存一次模型参数,最多保留15个文件
config_ck = CheckpointConfig(save_checkpoint_steps=125, keep_checkpoint_max=15)
# 应用模型保存参数
ckpoint = ModelCheckpoint(prefix="checkpoint_lenet", config=config_ck) def train_net(args, model, epoch_size, data_path, repeat_size, ckpoint_cb, sink_mode):
"""定义训练的方法"""
# 加载训练数据集
ds_train = create_dataset(os.path.join(data_path, "train"), 32, repeat_size)
model.train(epoch_size, ds_train, callbacks=[ckpoint_cb, LossMonitor(125)], dataset_sink_mode=sink_mode) def test_net(network, model, data_path):
"""定义验证的方法"""
ds_eval = create_dataset(os.path.join(data_path, "test"))
acc = model.eval(ds_eval, dataset_sink_mode=False)
print("{}".format(acc)) mnist_path = "./datasets/MNIST_Data"
train_epoch = 1
dataset_size = 1
model = Model(net, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
train_net(args, model, train_epoch, mnist_path, dataset_size, ckpoint, True)
test_net(net, model, mnist_path)
不得不说,对于新框架 MindSpore 来说,还是坑蛮多的,稍有不注意就会出意料以外的结果。
model.train方法的dataset_sink_mode参数设置为False时以step作为单位打印数据——(只在mode=context.GRAPH_MODE下成立,在mode=context.PYNATIVE_MODE模式下不成立)的更多相关文章
- 解决部分在Debug模式下程序没问题但是Release模式下出现问题的方法
编译策略介绍 关于优化级别:GCC_OPTIMIZATION_LEVEL 描述如下 None: Do not optimize. [-O0]With this setting, the compil ...
- uploadify3.2.1的参数设置
$('#file_upload').uploadify({ auto:false, //接受true 或 false两个值,当为true时选择文件后会自动上传:为false时只会把选择的文件增加进队列 ...
- ArcEngine中IFeatureClass.Search(filter, Recycling)方法中Recycling参数的理解
转自 ArcEngine中IFeatureClass.Search(filter, Recycling)方法中Recycling参数的理解 ArcGIS Engine中总调用IFeatureCla ...
- jqGrid的autoencode参数设置为true在客户端可能引发的编码问题
不久前使用jqGrid+MVC做过一段时间开发. 一开始,分页参数几乎都是默认值,jqGrid的分页功能很好用. 考虑到each input is evil,我们的系统对安全性又有较高要求,所以,为了 ...
- SSRS报表参数设置
一.日期时间类型的参数注意事项: 关于数据类型的选择:(只有数据类型设置为日期/时间格式,在查询的时候才会显示日期控件,提示信息一般改成汉字) 指定默认值:指定开始日期为前10天,
- Lattice 的 Framebuffer IP核使用调试笔记之IP核生成与参数设置
本文由远航路上ing 原创,转载请标明出处. 这节笔记记录IP核的生成以及参数设置. 先再IP库里下载安装Framebuffer 的ipcore 并安装完毕. 一.IP核的生成: 1.先点击IP核则右 ...
- mysql参数设置与查看
查看默认的参数设置(包含读取到的参数文件中的设置) mysqld --verbose --help 查看默认的参数设置(不包含参数文件中的设置) mysqld --no-defaults --ve ...
- 【记录一个问题】opencl enqueueWriteBuffer()中,cl_bool blocking参数设置无效
err = queue.enqueueWriteBuffer(in_buf, true, 0, bmp_size, bmp_data, NULL, &event); 以上代码中,第二个参数设置 ...
- Jdbc Url 设置allowMultiQueries为true和false时底层处理机制研究
一个mysql jdbc待解之谜 关于jdbc url参数 allowMultiQueries 如下的一个普通JDBC示例: String user ="root"; Strin ...
- cxf client在后台不通且chunk设置为false的时候不能在控制台输出请求日志
场景: 服务编排框架支持编排webservice服务.call webservice的client是基于cxf做的.为了使用服务编排的开发者调试与定位问题方便,需要将webservice的请求与响应报 ...
随机推荐
- OpenTelemetry Logging 思维导图,收藏
Log 是最常用.最自然的监控数据类型之一,具有以下的优点: 日志的内容比指标更加丰富,可以提供更多的细节信息,帮助开发人员和运维人员更好地理解应用程序的运行状况,通过日志几乎可以重现.还原系统的完整 ...
- work08
day09作业: 必做题:========================================第一题: 1.定义一个Animal类,包含如下行为: eat() 打印"要吃饭&qu ...
- SD-WAN中二层组网与三层组网的区别
前言 随着企业网络需求的不断增长和变化,SD-WAN作为一种现代网络技术,为企业提供了更灵活.高效的网络解决方案.在SD-WAN中,二层组网和三层组网是两种常见的部署模型,它们有着各自的特点和适用场景 ...
- Debezium-Flink-Hudi:实时流式CDC
1. 什么是Debezium Debezium是一个开源的分布式平台,用于捕捉变化数据(change data capture)的场景.它可以捕捉数据库中的事件变化(例如表的增.删.改等),并将其转为 ...
- 为什么Linux不能在中断中睡眠
中断分析 首先来看中断的流程: 1.进入中断处理程序---> 2.保存关键上下文----> 3.开中断(sti指令)---> /* 硬中断:对应于1.2.3步骤. 在这几个步骤中,所 ...
- Python_12 多继承与多态
一.查缺补漏 1. self和super的区别:self调用自己方法,super调用父类方法 当使用 self 调用方法时,会从当前类的方法列表中开始找,如果没有,就从父类中再找 而当使用 super ...
- 【资料分享】基于TI Sitara系列AM3352/AM3354/AM3359核心板规格书
1 核心板简介 创龙科技SOM-TL335x-S是一款基于TI Sitara系列AM3352/AM3354/AM3359 ARM Cortex-A8高性能低功耗处理器设计的低成本工业级核心板,通过邮票 ...
- C#数据结构与算法入门教程,值得收藏学习!
前言 最近看到DotNetGuide技术社区交流群有不少小伙伴提问:想要系统化的学习数据结构和算法,不知道该怎么入门,有无好的教程推荐的?,今天大姚给大家推荐2个开源.免费的C#数据结构与算法入门教程 ...
- [UG 二次开发 PYTHON] 添加螺纹规格
NX 1988 系列 在添加螺纹特征时,不能自定义螺纹规格, 从网上找到的资料上讲,改一个XML文件,在文件中添加自定义的螺纹规格,从而实现需要的效果. 自己写了一个小程序,方便手动添加螺纹规格. 效 ...
- 洛谷P1432
水一道绿题,整体思路和八数码很像,哈希表存解,然后常规模拟即可 #include<iostream> #include<utility> #include<queue&g ...