现象: 执行mapreduce任务时失败

通过hadoop fsck -openforwrite命令查看发现有文件没有关闭。

[root@com ~]# hadoop fsck -openforwrite /data/rc/click/mpp/15-08-05/
DEPRECATED: Use of this script to execute hdfs command is deprecated.
Instead use the hdfs command for it.

Connecting to namenode via http://com.hunantv.hadoopnamenode:50070
FSCK started by root (auth:SIMPLE) from /10.100.1.46 for path /data/rc/click/mpp/15-08-05/ at Thu Aug 06 14:05:03 CST 2015
....................................................................................................
....................................................................................................
........./data/rc/click/mpp/15-08-05/FlumeData.1438758322864 42888 bytes, 1 block(s), OPENFORWRITE:
/data/rc/click/mpp/15-08-05/FlumeData.1438758322864: Under replicated BP-1672356070-10.100.1.36-1412072991411:blk_1120646538_47162789{blockUCState=UNDER_CONSTRUCTION, primaryNodeIndex=-1, replicas=[ReplicaUnderConstruction[[DISK]DS-f4fff5f3-f3fd-4054-a75c-1d7da53a73af:NORMAL|FINALIZED], ReplicaUnderConstruction[[DISK]DS-26f54bc5-5026-4e6a-94ec-8435224e4aa9:NORMAL|RWR], ReplicaUnderConstruction[[DISK]DS-4ab3fffc-6468-47df-8023-79f23a330371:NORMAL|FINALIZED]]}. Target Replicas is 3 but found 2 replica(s).
..........................................................................................
............................Status: HEALTHY
Total size: 99186583 B
Total dirs: 1
Total files: 328
Total symlinks: 0
Total blocks (validated): 328 (avg. block size 302398 B)
Minimally replicated blocks: 328 (100.0 %)
Over-replicated blocks: 0 (0.0 %)
Under-replicated blocks: 1 (0.30487806 %)
Mis-replicated blocks: 0 (0.0 %)
Default replication factor: 3
Average block replication: 2.996951
Corrupt blocks: 0
Missing replicas: 1 (0.101626016 %)
Number of data-nodes: 59
Number of racks: 6
FSCK ended at Thu Aug 06 14:05:03 CST 2015 in 36 milliseconds

The filesystem under path '/data/rc/click/mpp/15-08-05/' is HEALTHY

查看FLume日志

[root@10.100.1.117] out: 05 Aug 2015 11:15:19,322 INFO [SinkRunner-PollingRunner-DefaultSinkProcessor] (org.apache.flume.sink.hdfs.BucketWriter.open:234) - Creating hdfs://com.hunantv.hadoopnamenode:8020/data/logs/amobile/vod/15-08-05/FlumeData.1438744519293.tmp
[root@10.100.1.117] out: 05 Aug 2015 11:16:20,493 INFO [hdfs-sin_hdfs_201-roll-timer-0] (org.apache.flume.sink.hdfs.BucketWriter$5.call:429) - Closing idle bucketWriter hdfs://com.hunantv.hadoopnamenode:8020/data/logs/amobile/vod/15-08-05/FlumeData.1438744519293.tmp at 1438744580493
[root@10.100.1.117] out: 05 Aug 2015 11:16:20,497 INFO [hdfs-sin_hdfs_201-roll-timer-0] (org.apache.flume.sink.hdfs.BucketWriter.close:363) - Closing hdfs://com.hunantv.hadoopnamenode:8020/data/logs/amobile/vod/15-08-05/FlumeData.1438744519293.tmp
[root@10.100.1.117] out: 05 Aug 2015 11:16:30,501 WARN [hdfs-sin_hdfs_201-roll-timer-0] (org.apache.flume.sink.hdfs.BucketWriter.close:370) - failed to close() HDFSWriter for file (hdfs://com.hunantv.hadoopnamenode:8020/data/logs/amobile/vod/15-08-05/FlumeData.1438744519293.tmp). Exception follows.
[root@10.100.1.117] out: java.io.IOException: Callable timed out after 10000 ms on file: hdfs://com.hunantv.hadoopnamenode:8020/data/logs/amobile/vod/15-08-05/FlumeData.1438744519293.tmp
[root@10.100.1.117] out: 05 Aug 2015 11:16:30,503 INFO [hdfs-sin_hdfs_201-call-runner-7] (org.apache.flume.sink.hdfs.BucketWriter$8.call:629) - Renaming hdfs://com.hunantv.hadoopnamenode:8020/data/logs/amobile/vod/15-08-05/FlumeData.1438744519293.tmp to hdfs://com.hunantv.hadoopnamenode:8020/data/logs/amobile/vod/15-08-05/FlumeData.1438744519293

关闭hdfs文件操作因为超时失败,

查看源码:

 public synchronized void close(boolean callCloseCallback)
throws IOException, InterruptedException {
checkAndThrowInterruptedException();
try {
flush();
} catch (IOException e) {
LOG.warn("pre-close flush failed", e);
}
boolean failedToClose = false;
LOG.info("Closing {}", bucketPath);
CallRunner<Void> closeCallRunner = createCloseCallRunner();
if (isOpen) {
try {
callWithTimeout(closeCallRunner);
sinkCounter.incrementConnectionClosedCount();
} catch (IOException e) {
LOG.warn(
"failed to close() HDFSWriter for file (" + bucketPath +
"). Exception follows.", e);
sinkCounter.incrementConnectionFailedCount();
failedToClose = true;
}
isOpen = false;
} else {
LOG.info("HDFSWriter is already closed: {}", bucketPath);
} // NOTE: timed rolls go through this codepath as well as other roll types
if (timedRollFuture != null && !timedRollFuture.isDone()) {
timedRollFuture.cancel(false); // do not cancel myself if running!
timedRollFuture = null;
} if (idleFuture != null && !idleFuture.isDone()) {
idleFuture.cancel(false); // do not cancel myself if running!
idleFuture = null;
} if (bucketPath != null && fileSystem != null) {
// could block or throw IOException
try {
renameBucket(bucketPath, targetPath, fileSystem);
} catch(Exception e) {
LOG.warn(
"failed to rename() file (" + bucketPath +
"). Exception follows.", e);
sinkCounter.incrementConnectionFailedCount();
final Callable<Void> scheduledRename =
createScheduledRenameCallable();
timedRollerPool.schedule(scheduledRename, retryInterval,
TimeUnit.SECONDS);
}
}
if (callCloseCallback) {
runCloseAction();
closed = true;
}
}

默认超时为10000ms,失败后没有重试,代码中有 failedToClose变量, 但未用到,可能开发人员忘了处理了。。。

解决方法:

1. 配置调用操作超时时间,将其调大一点,如5分钟。Flume hdfs sink配置如下:

agent12.sinks.sin_hdfs_201.type=hdfs
agent12.sinks.sin_hdfs_201.channel=ch_hdfs_201
agent12.sinks.sin_hdfs_201.hdfs.path=hdfs://com.hunantv.hadoopnamenode:8020/data/logs/amobile/vod/15-%{month}-%{day}
agent12.sinks.sin_hdfs_201.hdfs.round=true
agent12.sinks.sin_hdfs_201.hdfs.roundValue=10
agent12.sinks.sin_hdfs_201.hdfs.roundUnit=minute
agent12.sinks.sin_hdfs_201.hdfs.fileType=DataStream
agent12.sinks.sin_hdfs_201.hdfs.writeFormat=Text
agent12.sinks.sin_hdfs_201.hdfs.rollInterval=0
agent12.sinks.sin_hdfs_201.hdfs.rollSize=209715200
agent12.sinks.sin_hdfs_201.hdfs.rollCount=0
agent12.sinks.sin_hdfs_201.hdfs.idleTimeout=300
agent12.sinks.sin_hdfs_201.hdfs.batchSize=100
agent12.sinks.sin_hdfs_201.hdfs.minBlockReplicas=1
agent12.sinks.sin_hdfs_201.hdfs.callTimeout=300000

  

2. 修改源码,增加重试。如下:

 public synchronized void close(boolean callCloseCallback)
throws IOException, InterruptedException {
checkAndThrowInterruptedException();
try {
flush();
} catch (IOException e) {
LOG.warn("pre-close flush failed", e);
}
boolean failedToClose = false;
LOG.info("Closing {}", bucketPath);
CallRunner<Void> closeCallRunner = createCloseCallRunner();
int tryTime = 1;
while (isOpen && tryTime <= 5) {
try {
callWithTimeout(closeCallRunner);
sinkCounter.incrementConnectionClosedCount();
} catch (IOException e) {
LOG.warn(
"failed to close() HDFSWriter for file (try times:" + tryTime + "): " + bucketPath +
". Exception follows.", e);
sinkCounter.incrementConnectionFailedCount();
failedToClose = true;
}
if (failedToClose) {
isOpen = true;
tryTime++;
Thread.sleep(this.callTimeout);
} else {
isOpen = false;
}
}
//如果isopen失敗
if (isOpen) {
LOG.error("failed to close file: " + bucketPath + " after " + tryTime + " tries.");
} else {
LOG.info("HDFSWriter is already closed: {}", bucketPath);
} // NOTE: timed rolls go through this codepath as well as other roll types
if (timedRollFuture != null && !timedRollFuture.isDone()) {
timedRollFuture.cancel(false); // do not cancel myself if running!
timedRollFuture = null;
} if (idleFuture != null && !idleFuture.isDone()) {
idleFuture.cancel(false); // do not cancel myself if running!
idleFuture = null;
} if (bucketPath != null && fileSystem != null) {
// could block or throw IOException
try {
renameBucket(bucketPath, targetPath, fileSystem);
} catch (Exception e) {
LOG.warn(
"failed to rename() file (" + bucketPath +
"). Exception follows.", e);
sinkCounter.incrementConnectionFailedCount();
final Callable<Void> scheduledRename =
createScheduledRenameCallable();
timedRollerPool.schedule(scheduledRename, retryInterval,
TimeUnit.SECONDS);
}
}
if (callCloseCallback) {
runCloseAction();
closed = true;
}
}

  

												

[bigdata] 使用Flume hdfs sink, hdfs文件未关闭的问题的更多相关文章

  1. HDFS Sink使用技巧

    1.文件滚动策略 在HDFS Sink的文件滚动就是文件生成,即关闭当前文件,创建新文件.它的滚动策略由以下几个属性控制: hdfs.rollInterval 基于时间间隔来进行文件滚动,默认是30, ...

  2. Flume采集处理日志文件

    Flume简介 Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集.聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据:同时,Flume提供对数据 ...

  3. flume中sink到hdfs,文件系统频繁产生文件,文件滚动配置不起作用?

    在测试hdfs的sink,发现sink端的文件滚动配置项起不到任何作用,配置如下: a1.sinks.k1.type=hdfs a1.sinks.k1.channel=c1 a1.sinks.k1.h ...

  4. flume中sink到hdfs,文件系统频繁产生文件和出现乱码,文件滚动配置不起作用?

    问题描述  解决办法 先把这个hdfs目录下的数据删除.并修改配置文件flume-conf.properties,重新采集. # Licensed to the Apache Software Fou ...

  5. Flume中的HDFS Sink配置参数说明【转】

    转:http://lxw1234.com/archives/2015/10/527.htm 关键字:flume.hdfs.sink.配置参数 Flume中的HDFS Sink应该是非常常用的,其中的配 ...

  6. Flume启动报错[ERROR - org.apache.flume.sink.hdfs. Hit max consecutive under-replication rotations (30); will not continue rolling files under this path due to under-replication解决办法(图文详解)

    前期博客 Flume自定义拦截器(Interceptors)或自带拦截器时的一些经验技巧总结(图文详解)   问题详情 -- ::, (SinkRunner-PollingRunner-Default ...

  7. shell脚本监控Flume输出到HDFS上文件合法性

    在使用flume中发现由于网络.HDFS等其它原因,使得经过Flume收集到HDFS上得日志有一些异常,表现为: 1.有未关闭的文件:以tmp(默认)结尾的文件.加入存到HDFS上得文件应该是gz压缩 ...

  8. [ETL] Flume 理论与demo(Taildir Source & Hdfs Sink)

    一.Flume简介 1. Flume概述 Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集.聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据: ...

  9. Flume采集目录及文件到HDFS案例

    采集目录到HDFS 使用flume采集目录需要启动hdfs集群 vi spool-hdfs.conf # Name the components on this agent a1.sources = ...

随机推荐

  1. sqoop使用中的小问题

    1.数据库连接异常 执行数据导出 sqoop export --connect jdbc:mysql://192.168.208.129:3306/test --username hive --P - ...

  2. [AlwaysOn Availability Groups]CLUSTER.LOG(AG)

    CLUSTER.LOG(AG) 作为故障转移资源,在SQL Server和windows故障转移集群服务的资源DLL(hadrres.dll)之间有额外的内部交流,DLL无法被SQL Server监控 ...

  3. cnless.sh:改进版less,可自动识别GBK编码或UTF-8编码。

    #!/bin/bash #功能:让GBK编码的文件可以使用less正常显示中文(自动识别GBK和UTF-8编码) #v0. 在LINUX下,使用UTF-8编码,less UTF-8的文件时显示中文正常 ...

  4. 002.php安装(lnmp)

    搭建lnmp环境时,需要先安装mysql,再安装php,而nginx安装顺序无所谓,nginx与php之间的联系需要手动配置 一.php下载和配置“安装环境“ [root@huh ~]# cd /us ...

  5. mysql高可用架构之mysql-mmm配置详解

    实验系统:CentOS 6.6_x86_64 实验前提:防火墙和selinux都关闭 实验说明:本实验共有5台主机,IP分配如拓扑 实验软件:mariadb-10.0.20 mysql-mmm-2.2 ...

  6. spark standalone ha spark submit

    when you build a spark standalone ha cluster, when you submit your app,  you should send it to the l ...

  7. monkeyrunner 自动化测试 图片对比的实现

    这个功能在网上看了好多人的代码,但是总是在image.writeToFile('D:/tmp/images/black.png','png')这一句出错.查了google的API也感觉没错呀. 后来自 ...

  8. 帆软报表FineReport SQLServer数据库连接失败常见解决方案

    1. 问题描述 帆软报表FineReport客户端连接SQLServer(2000.2005等),常常会出现如下错误:com.microsoft.sqlserver.jdbc.SQLServerExc ...

  9. Neutron 理解 (1): Neutron 所实现的虚拟化网络 [How Netruon Virtualizes Network]

    学习 Neutron 系列文章: (1)Neutron 所实现的虚拟化网络 (2)Neutron OpenvSwitch + VLAN 虚拟网络 (3)Neutron OpenvSwitch + GR ...

  10. Oracle闪回技术详解

     概述: 闪回技术是Oracle强大数据库备份恢复机制的一部分,在数据库发生逻辑错误的时候,闪回技术能提供快速且最小损失的恢复(多数闪回功能都能在数据库联机状态下完成).需要注意的是,闪回技术旨在快速 ...