线性dp:LeetCode674. 最长连续递增序列
LeetCode674. 最长连续递增序列
- 阅读本文之前,需要先了解“动态规划方法论”,这在我的文章以前有讲过
- 本文之前也讲过一篇文章:最长递增子序列,这道题,阅读本文的同时可以与“最长递增子序列进行对比”,这样更能对比二者的区别!
LeetCode300.最长递增子序列 - Tomorrowland_D - 博客园 (cnblogs.com)
- leetcode链接如下
题目叙述
给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。
连续递增的子序列 可以由两个下标 l 和 r(l < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]] 就是连续递增子序列。
示例 1:
- 输入:nums = [1,3,5,4,7]
- 输出:3
- 解释:最长连续递增序列是 [1,3,5], 长度为3。尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为 5 和 7 在原数组里被 4 隔开。
示例 2:
- 输入:nums = [2,2,2,2,2]
- 输出:1
- 解释:最长连续递增序列是 [2], 长度为1。
提示:
- 0 <= nums.length <= 10^4
- -10^9 <= nums[i] <= 10^9
动态规划思路讲解:
- 这道题与[最长递增子序列](LeetCode300.最长递增子序列 - Tomorrowland_D - 博客园 (cnblogs.com))的区别就是,最长递增子序列是可以不连续的,而最长连续递增序列必须要是连续的。
- 我们这道题仍然可以采用dp[i]的思想,而这里的dp[i]与最长递增子序列的dp[i]就差不多了,但不是完全一致
状态变量及其含义
- 我们可以设置状态变量dp[i],表示以nums[i]为结尾的最长连续子序列的长度
递推公式
这里我们不需要j指针,只需要将
nums[i]与nums[i-1]
作比较,判断它们两个是否能继续构成连续递增子序列,如果nums[i]<nums[i-1]
,证明nums[i]
不能与nums[i-1]
构成连续递增子序列,所以说dp[i]=0
当
nums[i]>nums[i-1]
时,意味nums[i]与前面能继续构成连续递增子序列,所以dp[i]=dp[i-1]+1
故而递推公式为:
dp[i]=0 (nums[i]<=nums[i-1]);
dp[i]=dp[i-1]+1 (nums[i]>nums[i-1])
遍历顺序
- 这题dp[i]需要由dp[i-1]来推理出来,所以说遍历顺序显然是从前向后遍历。
如何初始化dp数组?
- 显然,一开始dp数组中的所有元素都初始化为1,因为每个元素至少都有一个最长连续递增子序列。
举例验证dp数组
- 举例:nums = [1,3,5,4,7]
- dp[0]=1
- dp[1]=2
- dp[2]=3
- dp[3]=0
- dp[4]=2
- 通过示例1的分析,我们也可以得知我们的dp数组是正确的
代码实现:
class Solution {
public:
int findLengthOfLCIS(vector<int>& nums) {
//全都初始化为1
vector<int> dp(nums.size(),1);
//结果至少是1
int ans=1;
for(int i=1;i<nums.size();i++){
if(nums[i]>nums[i-1]) dp[i]=dp[i-1]+1;
ans=max(ans,dp[i]);
}
return ans;
}
};
线性dp:LeetCode674. 最长连续递增序列的更多相关文章
- [Swift]LeetCode674. 最长连续递增序列 | Longest Continuous Increasing Subsequence
Given an unsorted array of integers, find the length of longest continuous increasing subsequence (s ...
- LeetCode674. 最长连续递增序列
原题链接 1 class Solution: 2 def findLengthOfLCIS(self, nums: List[int]) -> int: 3 ans = begin = 0 4 ...
- Leetcode674.Longest Continuous Increasing Subsequence最长连续递增序列
给定一个未经排序的整数数组,找到最长且连续的的递增序列. 示例 1: 输入: [1,3,5,4,7] 输出: 3 解释: 最长连续递增序列是 [1,3,5], 长度为3. 尽管 [1,3,5,7] 也 ...
- LeetCode 最长连续递增序列
给定一个未经排序的整数数组,找到最长且连续的的递增序列. 示例 1: 输入: [1,3,5,4,7] 输出: 3 解释: 最长连续递增序列是 [1,3,5], 长度为3. 尽管 [1,3,5,7] 也 ...
- 【LeetCode动态规划#14】子序列系列题(最长递增子序列、最长连续递增序列、最长重复子数组、最长公共子序列)
最长递增子序列 力扣题目链接(opens new window) 给你一个整数数组 nums ,找到其中最长严格递增子序列的长度. 子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其 ...
- LeetCode 674. Longest Continuous Increasing Subsequence (最长连续递增序列)
Given an unsorted array of integers, find the length of longest continuous increasing subsequence. E ...
- [LeetCode] Longest Continuous Increasing Subsequence 最长连续递增序列
Given an unsorted array of integers, find the length of longest continuous increasing subsequence. E ...
- [LeetCode] 674. Longest Continuous Increasing Subsequence 最长连续递增序列
Given an unsorted array of integers, find the length of longest continuous increasing subsequence. E ...
- leetcode 674. 最长连续递增序列
1. 题目 给定一个未经排序的整数数组,找到最长且连续的的递增序列. 示例 1: 输入: [1,3,5,4,7] 输出: 3 解释: 最长连续递增序列是 [1,3,5], 长度为3. 尽管 [1,3, ...
- LeetCode 674. 最长连续递增序列(Longest Continuous Increasing Subsequence) 18
674. 最长连续递增序列 674. Longest Continuous Increasing Subsequence 题目描述 给定一个未经排序的整型数组,找到最长且连续的递增序列. Given ...
随机推荐
- Stable Diffusion(三)Dreambooth finetune模型
1. Dreambooth Dreambooth可以把你任何喜欢的东西放入Stable Diffusion模型. 1.1. 什么是Dreambooth 最初由谷歌在2022年发布,是对SD模型的fin ...
- SpringBoot+mail 轻松实现各类邮件自动推送
一.简介 在实际的项目开发过程中,经常需要用到邮件通知功能.例如,通过邮箱注册,邮箱找回密码,邮箱推送报表等等,实际的应用场景非常的多. 早期的时候,为了能实现邮件的自动发送功能,通常会使用 Java ...
- vba--数组,多个表中的程序合并到一起,设置为一个按钮
Sub ttt() t = Timer Application.DisplayAlerts = False '清空数据 Sheets("买卖4").Select Range(&qu ...
- 复习 - es6语法
这几天电脑有点问题,一直在弄,而且论文也逼近了也在时间弄那个 ,前面node有一个大项目,已经做完了,我现在是准备把上次复习断下的继续复习一直到这个项目,然后就开始vue了. 1. 首先是函数的一个进 ...
- React Lazy 和 Suspense
在React应用中,有些组件可能不经常用到,比如法律条款的弹窗,我们几乎不看,这些组件也就没有必要首次加载,可以在点击它们的时候再加载,这就需要动态引入组件,需要组件的时候,才引入组件,加载它们,进行 ...
- 使用VS Code 学习算法(第四版)
最近在学习算法(第四版),书中一直在使用命令行来执行Java程序,而使用Eclipse时,很难使用命令行,或者说我根本就不会用,于是就想研究一下使用VS Code来编写代码,使用命令行来执行程序.看了 ...
- Java中字符串去除空格
1. str.trim(); 去掉首尾空格 2. str.replace(" ", ""); 去掉所有空格,包括首尾.中间 String str = " ...
- springboot异常解决
问题解决 问题解释 出现这个问题表示拦截器或控制器的某个请求处理方法返回了一个与请求路径相同的视图名称,导致视图解析器循环地尝试解析并渲染这个视图,从而引发循环视图路径的异常. 问题分析 原先的jav ...
- 洛谷P2658
我在洛谷第一次发个题解,管理员居然把这题的题解通道关了.... 看到好像没有优先队列的题解,来水一手 思路 形似A* 却不是A* 只需要求出其中一个点到其他点的D系数,所有D系数的最大值即是答案. 数 ...
- Unity无法安装Entities 1.2.0 Package的解决方法
会出现如下的错误提示: 本质原因是国内版的Unity使用了自己的Package加速CDN:packages.unity.cn,而不是官方的packages.unity.com.而这个CDN更新了Ent ...