线性dp:LeetCode674. 最长连续递增序列
LeetCode674. 最长连续递增序列
- 阅读本文之前,需要先了解“动态规划方法论”,这在我的文章以前有讲过
- 本文之前也讲过一篇文章:最长递增子序列,这道题,阅读本文的同时可以与“最长递增子序列进行对比”,这样更能对比二者的区别!
LeetCode300.最长递增子序列 - Tomorrowland_D - 博客园 (cnblogs.com)
- leetcode链接如下
题目叙述
给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。
连续递增的子序列 可以由两个下标 l 和 r(l < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]] 就是连续递增子序列。
示例 1:
- 输入:nums = [1,3,5,4,7]
- 输出:3
- 解释:最长连续递增序列是 [1,3,5], 长度为3。尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为 5 和 7 在原数组里被 4 隔开。
示例 2:
- 输入:nums = [2,2,2,2,2]
- 输出:1
- 解释:最长连续递增序列是 [2], 长度为1。
提示:
- 0 <= nums.length <= 10^4
- -10^9 <= nums[i] <= 10^9
动态规划思路讲解:
- 这道题与[最长递增子序列](LeetCode300.最长递增子序列 - Tomorrowland_D - 博客园 (cnblogs.com))的区别就是,最长递增子序列是可以不连续的,而最长连续递增序列必须要是连续的。
- 我们这道题仍然可以采用dp[i]的思想,而这里的dp[i]与最长递增子序列的dp[i]就差不多了,但不是完全一致
状态变量及其含义
- 我们可以设置状态变量dp[i],表示以nums[i]为结尾的最长连续子序列的长度
递推公式
这里我们不需要j指针,只需要将
nums[i]与nums[i-1]
作比较,判断它们两个是否能继续构成连续递增子序列,如果nums[i]<nums[i-1]
,证明nums[i]
不能与nums[i-1]
构成连续递增子序列,所以说dp[i]=0
当
nums[i]>nums[i-1]
时,意味nums[i]与前面能继续构成连续递增子序列,所以dp[i]=dp[i-1]+1
故而递推公式为:
dp[i]=0 (nums[i]<=nums[i-1]);
dp[i]=dp[i-1]+1 (nums[i]>nums[i-1])
遍历顺序
- 这题dp[i]需要由dp[i-1]来推理出来,所以说遍历顺序显然是从前向后遍历。
如何初始化dp数组?
- 显然,一开始dp数组中的所有元素都初始化为1,因为每个元素至少都有一个最长连续递增子序列。
举例验证dp数组
- 举例:nums = [1,3,5,4,7]
- dp[0]=1
- dp[1]=2
- dp[2]=3
- dp[3]=0
- dp[4]=2
- 通过示例1的分析,我们也可以得知我们的dp数组是正确的
代码实现:
class Solution {
public:
int findLengthOfLCIS(vector<int>& nums) {
//全都初始化为1
vector<int> dp(nums.size(),1);
//结果至少是1
int ans=1;
for(int i=1;i<nums.size();i++){
if(nums[i]>nums[i-1]) dp[i]=dp[i-1]+1;
ans=max(ans,dp[i]);
}
return ans;
}
};
线性dp:LeetCode674. 最长连续递增序列的更多相关文章
- [Swift]LeetCode674. 最长连续递增序列 | Longest Continuous Increasing Subsequence
Given an unsorted array of integers, find the length of longest continuous increasing subsequence (s ...
- LeetCode674. 最长连续递增序列
原题链接 1 class Solution: 2 def findLengthOfLCIS(self, nums: List[int]) -> int: 3 ans = begin = 0 4 ...
- Leetcode674.Longest Continuous Increasing Subsequence最长连续递增序列
给定一个未经排序的整数数组,找到最长且连续的的递增序列. 示例 1: 输入: [1,3,5,4,7] 输出: 3 解释: 最长连续递增序列是 [1,3,5], 长度为3. 尽管 [1,3,5,7] 也 ...
- LeetCode 最长连续递增序列
给定一个未经排序的整数数组,找到最长且连续的的递增序列. 示例 1: 输入: [1,3,5,4,7] 输出: 3 解释: 最长连续递增序列是 [1,3,5], 长度为3. 尽管 [1,3,5,7] 也 ...
- 【LeetCode动态规划#14】子序列系列题(最长递增子序列、最长连续递增序列、最长重复子数组、最长公共子序列)
最长递增子序列 力扣题目链接(opens new window) 给你一个整数数组 nums ,找到其中最长严格递增子序列的长度. 子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其 ...
- LeetCode 674. Longest Continuous Increasing Subsequence (最长连续递增序列)
Given an unsorted array of integers, find the length of longest continuous increasing subsequence. E ...
- [LeetCode] Longest Continuous Increasing Subsequence 最长连续递增序列
Given an unsorted array of integers, find the length of longest continuous increasing subsequence. E ...
- [LeetCode] 674. Longest Continuous Increasing Subsequence 最长连续递增序列
Given an unsorted array of integers, find the length of longest continuous increasing subsequence. E ...
- leetcode 674. 最长连续递增序列
1. 题目 给定一个未经排序的整数数组,找到最长且连续的的递增序列. 示例 1: 输入: [1,3,5,4,7] 输出: 3 解释: 最长连续递增序列是 [1,3,5], 长度为3. 尽管 [1,3, ...
- LeetCode 674. 最长连续递增序列(Longest Continuous Increasing Subsequence) 18
674. 最长连续递增序列 674. Longest Continuous Increasing Subsequence 题目描述 给定一个未经排序的整型数组,找到最长且连续的递增序列. Given ...
随机推荐
- Stable Diffusion(二)WebUI使用指南
1. 前言 基于 https://stable-diffusion-art.com/ 内的教程进行翻译与整理,帮助快速上手 stable-diffusion 的使用. 2. 环境 AWS DeepLe ...
- Prometheus监控系统(三)Prometheus与Grafana集成
1. Prometheus和Grafana集成 Grafana是一款采用Go语言编写的开源应用,主要用于大规模指标数据的可视化展现,是网络架构和应用分析中最流行的时序数据展示工具.目前已支持绝大部分常 ...
- Linux 内核:设备驱动模型 学习总结
背景 其实之前就转载过别人针对Linux的设备驱动模型(Linux Device Driver Model,LDDM)的文章,但是受限于自身的能力,因此花了点时间重新学习了一下. 前人写的文章很好,我 ...
- 模拟用户登录-cookes
import requests url = 'https://www.xread8.com/user/login.json' headers = { 'User-Agent': 'Mozilla/5. ...
- 图论最短路径问题与matlab实现
上一次我们讨论了如何进行图论可视化,这一次我们通过matlab来找出图论中距离最小路径 目录 一.迪杰斯特拉算法(Dijkstra) 二.shortestpath函数用法 1.基本语法 2.参数设计 ...
- Java子类是否能继承父类上的注解
子类可以继承到父类上的注解吗? 在编写自定义注解时,可以通过指定@Inherited注解,申明自定义注解是否可以被继承:@Inherited只能实现类上的注解继承. 实现情况可细分为以下几种 未申明@ ...
- Solo 开发者周刊 (第10期):Sora 之后,谁是被遗忘的?谁又是被仰望的?
这里会整合 Solo 社区每周推广内容.产品模块或活动投稿,每周五发布.在这期周刊中,我们将深入探讨开源软件产品的开发旅程,分享来自一线独立开发者的经验和见解.本杂志开源,欢迎投稿. 好文推荐 Sol ...
- LabVIEW Actor Framwork (1)________ 边学边做server&client
初始需求: 现在要做一个类似聊天的demo,一个server端,若干个client端:首先是server启动,通过server可以打开若干个client端,然后每个client可以独立给server发 ...
- Windows系统下DoH配置小记
Windows系统下DoH配置小记 浏览器 Edge 打开edge://settings/privacy 使用安全的 DNS 指定如何查找网站的网络地址 设置自定义服务商为https://doh.op ...
- CSS+JS 实现动态曲线进度条
由于系统UI风格升级,产品童鞋和UI童鞋总是想要搞点儿事情出来,项目页面上的进度条从直线变成了曲线,哈哈,好吧,那就迎难而上 实现效果: 1.简单搞一搞 CSS , 此处代码有折叠 .process ...