目录

一维DFT

1 DFT的相关内容

  • 一维DFT的意义:一维信号由若干个不同频率的正余弦信号组合而成;
  • 一维DFT的解决问题:确定输入信号中有多少个周期信号,以及周期信号的幅值、频率、相位值;
  • 一维DFT的原理:
    • 通过采样频率fs对原始信号进行离散化,依次计算离散信号与各个基信号的相关性(N为采样点数对应存在N个基信号,每个基信号与离散信号会有一个复数结果)

  • 一维DFT的求取步骤:
    1. 设定采样频率fs,对输入信号f(t)进行采样,得到N个采样点,对应的离散化信号记作x[n],n = [0, 1, ..., N) ;
    2. 通过DFT公式计算得到N个匹配对X[k],k= [0, 1, ..., N),X[k]代表N个采样点的原始信号中存在着k个周期的的信号分量,即第k+1个基信号;
    \[X[k]=Σ_{n=0}^{N-1} x(n){e^{-jA}}=Σ_{n=0}^{N-1} x(n)(cos(A)-jsin(A)), 其中A=2πkn/N.
    \]
    1. 根据 总的采样时长 = N / fs,故对于X[k]≠0时,对应输入信号的 频率 f = (k * fs) / N;在k≠0时,幅值为 复数X[k]的模 除以 (N/2),在k=0时,幅值为 复数X[k]的模 除以 N;相位即为 复数X[k]的幅角;
    2. 注:因为要满足采样定理 fs ≥ 2f,故只使用频率域的前一半结果,由 f = k*fs/N 可推导;
    • 假设,X[2] 的模为不为0, 这说明N个采样点中有2个周期,故 每个周期的时长T =N / (2 ** fs) *,即输入信号的频率 f = (2 * fs) / N;

2 DFT计算结果验证

DFT计算公式:

\[X[k]=Σ_{n=0}^{N-1} x(n){e^{-jA}}=Σ_{n=0}^{N-1} x(n)(cos(A)-jsin(A)), 其中A=2πkn/N.
\]

通过numpy中np.fft.fft() 函数 验证 自己实现的代码是正确的,代码如下

import cmath
import matplotlib.pyplot as plt
import numpy as np plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False np.set_printoptions(edgeitems=3)
arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])
N = len(arr)
omega = 2 * np.pi / N
mag_ls = []
for k in range(N):
mag_ls.append(sum([arr[j] * cmath.exp(complex(0, -j * omega * k)) for j in range(N)])) print(np.array(mag_ls))
# [45. +0.j -4.5+12.364j -4.5 +5.363j -4.5 +2.598j -4.5 +0.793j
# -4.5 -0.793j -4.5 -2.598j -4.5 -5.363j -4.5-12.364j] X = np.fft.fft(arr)
print(X) # [45. +0.j -4.5+12.364j -4.5 +5.363j -4.5 +2.598j -4.5 +0.793j
# -4.5 -0.793j -4.5 -2.598j -4.5 -5.363j -4.5-12.364j]

3 DFT的时频曲线分析

问题:给定一个连续的输入信号 f(t) = 2 + 3 * np.cos(2 * np.pi * 0.2 * t) + 1.5 * np.cos(2 * np.pi * 0.1 * t) ,通过 DFT 来求解 输入信号中各个周期函数的幅值、频率、相位值;

思路:参考 一维DFT的求取步骤

代码实现:

import matplotlib.pyplot as plt
import numpy as np fs = 0.5 # 采样频率 HZ
t = np.arange(0, 100, 1 / fs) # 时间序列,每隔 1/fs 秒采集一次数据,共采集N次
N = len(t) # 序列的长度
x = 2 + 3 * np.cos(2 * np.pi * 0.2 * t) + 1.5 * np.cos(2 * np.pi * 0.1 * t)
X = np.fft.fft(x)
m = np.abs(X)
Mag = m.copy()
ifft_x = np.fft.ifft(X)
ifft_m = np.abs(ifft_x) freq = [k * fs / N for k in range(N)]
m[0] /= N
m[1:] /= (N / 2)
print("freq:", freq) plt.figure()
name = "f(t) = 2 + 3 * cos(2π * 0.2 * t) + 1.5 * np.cos(2π * 0.1 * t)"
plt.subplot(131), plt.plot(t, x, c="b", marker="o")
plt.title(name), plt.xlabel("采样周期 t={} 秒".format(1/fs)), plt.ylabel("输出f(t)") plt.subplot(132), plt.plot(range(N), Mag, c="g", marker="o"), plt.title("DFT 结果")
plt.title("DFT 结果"), plt.xlabel("基信号N=[0~{})".format(N)), plt.ylabel("基信号对应的幅值") plt.subplot(133), plt.plot(freq, m, c="r", marker="o"), plt.title("DFT 结果")
plt.title("DFT 结果"), plt.xlabel("信号的频率".format(N)), plt.ylabel("真实幅值") plt.figure()
plt.subplot(121), plt.plot(t, x, c="b"), plt.title("原始信号")
plt.subplot(122), plt.plot(t, ifft_m, c="g"), plt.title("逆DFT信号")
plt.show()

输出结果:

由图1可知:

  • fs=0.5hz,采样点 N = 50, f = k * fs / N, 直流分量的幅值 = X[0] 模 / (50),其它分量的幅值 = X[k] 模 / (25) k≠0
  • X[0] 对应输入信号中2,
  • X[10] 对应输入信号中 1.5 * np.cos(2 * np.pi * 0.1 * t) ,
  • X[20] 对应输入信号中 3 * np.cos(2 * np.pi * 0.2 * t)

由图2可知,DFT与IDFT是可逆的

4 DFT的应用

方法:使用DFT求取图像中单个网格的像素大小, psx = 用图像的宽度 除以 x方向上网格的数量,psx = 用图像的高度 除以 y方向上网格的数量;

思路:求解psx — 在x方向上求取图像的像素均值,然后经过DFT变换,得到频域上的周期信号,其中周期个数即为网格数量;为了缩小误差,可以按照一定大小来缩小图像,重复psx 求取过程,通过平均值来提高计算精度;同理 psy一样。

运行结果:

二维DFT

1 DFT在图像处理时的相关内容

  • 图像中高频与低频区别:

    • 高频:变化剧烈的灰度分量,例如边界
    • 低频:变化缓慢的灰度分量,例如一片大海
  • 傅里叶变换的作用:滤波、图像配准;
    • 低通滤波器:只保留低频,会使得图像模糊
    • 高通滤波器:只保留高频,会使得图像细节增强

2 DFT滤波应用

import cv2
import numpy as np
from matplotlib import pyplot as plt def DFT(image, isshow=True):
img_float32 = np.float32(image) dft = cv2.dft(img_float32, flags=cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
# 得到灰度图能表示的形式
magnitude_spectrum = 20 * np.log(cv2.magnitude(dft_shift[:, :, 0], dft_shift[:, :, 1])) if isshow:
plt.subplot(121), plt.imshow(image, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(magnitude_spectrum, cmap='gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show() return dft_shift def IDFT(image, dft_shift, Filtter="None", isshow=True):
if Filtter:
rows, cols = img.shape
crow, ccol = int(rows / 2), int(cols / 2) # 中心位置
mask = None
if Filtter == "HIGH":
# 高通滤波
mask = np.ones((rows, cols, 2), np.uint8)
mask[crow - 30:crow + 30, ccol - 30:ccol + 30] = 0
elif Filtter == "LOW":
# 低通滤波
mask = np.zeros((rows, cols, 2), np.uint8)
mask[crow - 30:crow + 30, ccol - 30:ccol + 30] = 1
dft_shift = dft_shift * mask f_ishift = np.fft.ifftshift(dft_shift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1]) if isshow:
plt.subplot(121), plt.imshow(image, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(img_back, cmap='gray')
plt.title('Result'), plt.xticks([]), plt.yticks([])
plt.show() return img_back if __name__ == "__main__":
img = cv2.imread('lena.jpg', 0)
fshift = DFT(img)
IDFT(img, fshift, Filtter="LOW")

运行结果:

离散傅里叶变换DFT的应用的更多相关文章

  1. 灰度图像--频域滤波 傅里叶变换之离散傅里叶变换(DFT)

    学习DIP第23天 转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对此表示很不 ...

  2. 【转】离散傅里叶变换-DFT(FFT)基础

    转:https://blog.csdn.net/zhangxz259/article/details/81627341 什么是离散傅里叶变换 matlab例子 本文是从最基础的知识开始讲解,力求用最通 ...

  3. 离散傅里叶变换DFT入门

    网上对于傅里叶变换相关的文章很多(足够多),有的是从物理相关角度入场,有的从数学分析角度入场.对于有志学习相关概念的同学还是能够很好的理解的. 数学包括三大块:代数学.几何.数学分析.前两块我们在中学 ...

  4. 用matlab脚本语言写M文件函数时用三种方法简单实现实现DFT(离散傅里叶变换)

    %用二重循环实现DFT: function xk=dt_0(xn); %define a function N=length(xn); %caculate the length of the vari ...

  5. c语言数字图像处理(六):二维离散傅里叶变换

    基础知识 复数表示 C = R + jI 极坐标:C = |C|(cosθ + jsinθ) 欧拉公式:C = |C|ejθ 有关更多的时域与复频域的知识可以学习复变函数与积分变换,本篇文章只给出DF ...

  6. opencv 3 core组件进阶(3 离散傅里叶变换;输入输出XML和YAML文件)

    离散傅里叶变换 #include "opencv2/core/core.hpp" #include "opencv2/imgproc/imgproc.hpp" ...

  7. OpenCV离散傅里叶变换

    离散傅里叶变换 作用:得到图像中几何结构信息 结论:傅里叶变换后的白色部分(即幅度较大的低频部分),表示的是图像中慢变化的特性,或者说是灰度变化缓慢的特性(低频部分). 傅里叶变换后的黑色部分(即幅度 ...

  8. 离散傅里叶变换(DFT)

    目录     一.研究的意义     二.DFT的定义    三.DFT与傅里叶变换和Z变换的关系     四.DFT的周期性     五.matlab实验       五.1 程序         ...

  9. Opencv 实现图像的离散傅里叶变换(DFT)、卷积运算(相关滤波)

    我是做Tracking 的,对于速度要求非常高.发现傅里叶变换能够使用. 于是学习之. 核心: 最根本的一点就是将时域内的信号转移到频域里面.这样时域里的卷积能够转换为频域内的乘积! 在分析图像信号的 ...

  10. 【算法•日更•第四十二期】离散傅里叶变换(DFT)

    ▎前言 小编相当的菜,这篇博客难度稍高,所以有些可能不会带有证明,博客中更多的是定义. 我们将要学到的东西: 复数 暴力多项式乘法 DFT 当然,小编之前就已经写过一篇博客了,主要讲的就是基础多项式, ...

随机推荐

  1. 二代水务系统架构设计分享——DDD+个性化

    系统要求 C/S架构的单体桌面应用,可以满足客户个性化需求,易于升级和维护.相比于一代Winform,界面要求美观,控件丰富可定制. 解决方案 依托.Net6开发平台,采用模块化思想设计(即分而治之的 ...

  2. 文心一言 VS 讯飞星火 VS chatgpt (73)-- 算法导论7.1 4题

    四.如何修改 QUICKSORT,使得它能够以非递增序进行排序? 文心一言: 快速排序(Quicksort)是一种常用的排序算法,基于分治策略进行设计.默认情况下,快速排序会以递增序进行排序.若想修改 ...

  3. JS中文件相关的知识(一):MIME类型

    不知道有没有同学和我一样,写代码时一遇到文件操作就犯怵,必须要先去把知识补一遍再说:对于Content-Type.responseType.ArrayBuffer.buffer.blob.file等这 ...

  4. Jenkins远程执行shell脚本,超时报错(ERROR: Exception when publishing, exception message [Exec timed out or was interrupted after 120,001 ms])

    通过Jenkins远程执行脚本时,发现Jenkins构建任务失败,但是服务器本身的脚本是生效的. 排查确认是Jenkins构建任务超时,导致Jenkins看板显示任务构建失败,但是服务器上的自动脚本执 ...

  5. go-zero 是如何实现令牌桶限流的?

    原文链接: 上一篇文章介绍了 如何实现计数器限流?主要有两种实现方式,分别是固定窗口和滑动窗口,并且分析了 go-zero 采用固定窗口方式实现的源码. 但是采用固定窗口实现的限流器会有两个问题: 会 ...

  6. K8S集群中使用JD KMS服务对敏感数据安全加密

    基本概念 KMS,Key Management Service,即密钥管理服务,在K8S集群中,以驱动和插件的形式启用对Secret,Configmap进行加密.以保护敏感数据, 驱动和插件需要使用者 ...

  7. 文心一言 VS 讯飞星火 VS chatgpt (82)-- 算法导论8.1 1题

    一.如果用go语言,在一棵比较排序算法的决策树中,一个叶结点可能的最小深度是多少? 文心一言: 在一个排序决策树(如二叉搜索树)中,每个叶节点的最小深度等于输入数据中最大元素与最小元素之间的位距离.这 ...

  8. 文心一言 VS 讯飞星火 VS chatgpt (85)-- 算法导论8.2 2题

    二.用go语言,试证明 COUNTING-SORT 是稳定的. 文心一言: 要证明 COUNTING-SORT 是稳定的,我们需要证明在排序过程中,具有相同值的元素在排序后仍保持其原始的相对顺序.CO ...

  9. Antd Form表单中Input输入框 在IE9下按下任何按键都会报校验失败

    antd Form表单中Input输入框 在IE9下按下任何按键都会报校验失败,导致输入框输入不了任何内容! 可能你的react及react-dom版本由于过高导致antd组件不能兼容,需要对reac ...

  10. 开源.NetCore通用工具库Xmtool使用连载 - 图形验证码篇

    [Github源码] <上一篇> 介绍了Xmtool工具库中的Web操作类库,今天我们继续为大家介绍其中的图形验证码类库. 图形验证码是为了抵御恶意攻击出现的一种设计:例如用户登录.修改密 ...