详细推导反向传播

下图是逻辑回归的推导:

回想一下逻辑回归的公式(参考公式1.2、公式1.5、公式1.6、公式1.15)

公式1.38:

\[\left.
\begin{array}{l}
{x }\\
{w }\\
{b }
\end{array}
\right\}
\implies{z={w}^Tx+b}
\implies{\alpha = \sigma(z)}
\implies{{L}\left(a,y \right)}
\]

所以回想当时我们讨论逻辑回归的时候,我们有这个正向传播步骤,其中我们计算\(z\),然后\(a\),然后损失函数\(L\)。

公式1.39:

\[\underbrace{
\left.
\begin{array}{l}
{x }\\
{w }\\
{b }
\end{array}
\right\}
}_{dw={dz}\cdot x, db =dz}
\impliedby\underbrace{{z={w}^Tx+b}}_{dz=da\cdot g^{'}(z),
g(z)=\sigma(z),
{\frac{{dL}}{dz}}={\frac{{dL}}{da}}\cdot{\frac{da}{dz}},
{\frac{d}{ dz}}g(z)=g^{'}(z)}
\impliedby\underbrace{{a = \sigma(z)}
\impliedby{L(a,y)}}_{da={\frac{{d}}{da}}{L}\left(a,y \right)=(-y\log{\alpha} - (1 - y)\log(1 - a))^{'}={-\frac{y}{a}} + {\frac{1 - y}{1 - a}{}} }
\]

神经网络的计算中,与逻辑回归十分类似,但中间会有多层的计算。下图是一个双层神经网络,有一个输入层,一个隐藏层和一个输出层。

前向传播:

计算\(z^{[1]}\),\(a^{[1]}\),再计算\(z^{[2]}\),\(a^{[2]}\),最后得到loss function

反向传播:

向后推算出\(da^{[2]}\),然后推算出\(dz^{[2]}\),接着推算出\(da^{[1]}\),然后推算出\(dz^{[1]}\)。我们不需要对\(x\)求导,因为\(x\)是固定的,我们也不是想优化\(x\)。向后推算出\(da^{[2]}\),然后推算出\(dz^{[2]}\)的步骤可以合为一步:

公式1.40:

\(dz^{[2]}=a^{[2]}-y\;,\;dW^{[2]}=dz^{[2]}{a^{[1]}}^{T}\)

(注意:逻辑回归中;为什么\(a^{[1]T}\)多了个转置:\(dw\)中的\(W\)(视频里是\(W^{[2]}_i\))是一个列向量,而\(W^{[2]}\)是个行向量,故需要加个转置);

公式1.41:

\(db^{[2]}=dz^{[2]}\)

公式1.42:

\(dz^{[1]} = W^{[2]T}dz^{[2]}* g[1]^{'}(z^{[1]})\)

注意:这里的矩阵:\(W^{[2]}\)的维度是:\((n^{[2]},n^{[1]})\)。

\(z^{[2]}\) , \(dz^{[2]}\)的维度都是:\((n^{[2]},1)\),如果是二分类,那维度就是\((1,1)\)。

\(z^{[1]}\),\(dz^{[1]}\)的维度都是:\((n^{[1]},1)\)。

证明过程:

见公式1.42,其中\(W^{[2]T}dz^{[2]}\)维度为:\((n^{[1]},n^{[2]})\)、\((n^{[2]},1)\)相乘得到\((n^{[1]},1)\),和\(z^{[1]}\)维度相同,

\(g[1]^{'}(z^{[1]})\)的维度为\((n^{[1]},1)\),这就变成了两个都是\((n^{[1]},1)\)向量逐元素乘积。

实现后向传播有个技巧,就是要保证矩阵的维度相互匹配。最后得到\(dW^{[1]}\)和\(db^{[1]}\),公式1.43:

\(dW^{[1]} =dz^{[1]}x^{T},db^{[1]} = dz^{[1]}\)

可以看出\(dW^{[1]}\) 和\(dW^{[2]}\) 非常相似,其中\(x\)扮演了\(a^{[0]}\)的角色,\(x^{T}\) 等同于\(a^{[0]T}\)。

由:

\(Z^{[1]} = W^{[1]}x + b^{[1]}\;,\;a^{[1]}=g^{[1]}(Z^{[1]})\)

得到:

\(Z^{[1]} = W^{[1]}x + b^{[1]}, A^{[1]} = g^{[1]}(Z^{[1]})\)

\[Z^{[1]} =
\left[
\begin{array}{c}
\vdots &\vdots & \vdots & \vdots \\
z^{[1](1)} & z^{[1](2)} & \vdots & z^{[1](m)} \\
\vdots &\vdots & \vdots & \vdots \\
\end{array}
\right]
\]

注意:大写的\(Z^{[1]}\)表示\(z^{[1](1)},z^{[1](2)},z^{[1](3)}...z^{[1](m)}\)的列向量堆叠成的矩阵,以下类同。

下图写了主要的推导过程:

公式1.44:

\(dZ^{[2]}=A^{[2]}-Y\;,\;dW^{[2]}={\frac{1}{m}}dZ^{[2]}{A^{[1]}}^{T}\)

公式1.45:

\(L = {\frac{1}{m}}\sum_i^n{L(\hat{y},y)}\)

公式1.46:

\(db^{[2]} = {\frac{1}{m}}np.sum(dZ^{[2]},axis=1,keepdims=True)\)

公式1.47:

\(\underbrace{dZ^{[1]}}_{(n^{[1]}, m)} = \underbrace{W^{[2]T}dZ^{[2]}}_{(n^{[1]}, m)}*\underbrace{g[1]^{'}
(Z^{[1]})}_{(n^{[1]}, m)}\)

公式1.48:

\(dW^{[1]} = {\frac{1}{m}}dZ^{[1]}x^{T}\)

公式1.49:

$db^{[1]} = {\frac{1}{m}}np.sum(dZ^{[1]},axis=1,keepdims=True) $

反向传播的推导是机器学习领域最难的数学推导之一,矩阵的导数要用链式法则来求,如果这篇博客理解不了也没大的关系,只要有这种直觉就可以了。还有一点,就是初始化你的神经网络的权重,不要都是0,而是随机初始化。

神经网络入门篇:直观理解反向传播(Backpropagation intuition)的更多相关文章

  1. 如何理解反向传播 Backpropagation 梯度下降算法要点

    http://colah.github.io/posts/2015-08-Backprop/ http://www.zhihu.com/question/27239198 待翻译 http://blo ...

  2. SGD 讲解,梯度下降的做法,随机性。理解反向传播

    SGD 讲解,梯度下降的做法,随机性.理解反向传播 待办 Stochastic Gradient Descent 随机梯度下降没有用Random这个词,因为它不是完全的随机,而是服从一定的分布的,只是 ...

  3. 100天搞定机器学习|day37 无公式理解反向传播算法之精髓

     100天搞定机器学习(Day1-34) 100天搞定机器学习|Day35 深度学习之神经网络的结构 100天搞定机器学习|Day36 深度学习之梯度下降算法 本篇为100天搞定机器学习之第37天,亦 ...

  4. 反向传播BackPropagation

    http://www.cnblogs.com/charlotte77/p/5629865.html http://www.cnblogs.com/daniel-D/archive/2013/06/03 ...

  5. 反向传播 Backpropagation

    前向计算:没啥好说的,一层一层套着算就完事了 y = f( ... f( Wlayer2T f( Wlayer1Tx ) ) ) 反向求导:链式法则 单独看一个神经元的计算,z (就是logit)对 ...

  6. 【python实现卷积神经网络】卷积层Conv2D反向传播过程

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  7. .NetCore 入门篇:理解

    (良心转载)原文地址:https://ken.io/note/dotnet-core-qucikstart-preface 一..NET Core的诞生 聊 .NET Core,就不得不说他的爸爸 . ...

  8. 深度学习与CV教程(4) | 神经网络与反向传播

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-det ...

  9. DL反向传播理解

    作者:寒小阳 时间:2015年12月. 出处:http://blog.csdn.net/han_xiaoyang/article/details/50321873 声明:版权所有,转载请联系作者并注明 ...

  10. BP(back propagation)反向传播

    转自:http://www.zhihu.com/question/27239198/answer/89853077 机器学习可以看做是数理统计的一个应用,在数理统计中一个常见的任务就是拟合,也就是给定 ...

随机推荐

  1. Composite 组合模式简介与 C# 示例【结构型3】【设计模式来了_8】

    〇.简介 1.什么是组合设计模式? 一句话解释:   针对树形结构的任意节点,都实现了同一接口,他们具有相同的操作,可以通过某一操作来遍历全部节点. 组合模式通过使用树形结构来组合对象,用来表示部分以 ...

  2. CF755C

    题目简化和分析: 这题不用说怎么分析了吧,这一看就是个并查集求连通分量个数的经典模板. 我们需要将 \(i\) 和 \(p_i\) 进行合并. 遍历每个 \(i\) 与 \(i+1\) 是否属于同一个 ...

  3. 栈溢出-GOT表劫持测试

    1.目标程序源代码 char name[64]; int main(){ int unsigned long long addr; setvbuf(stdin,0,2,0); setvbuf(stdo ...

  4. vue3源码学习api-createApp-amount

    vue3 地址 https://github.com/vuejs/core 首先看看vue文档什么是 Vue? ​ Vue (发音为 /vjuː/,类似 view) 是一款用于构建用户界面的 Java ...

  5. Doxygen 的学习

    https://dongzhixiao.blog.csdn.net/article/details/52190696 来自转载

  6. deepin解决文件管理器打不开和桌面黑屏的问题

    总结 deepin 的优点是上手非常容易, 但截止当前(2021-6-24)的使用来说稳定性还不是非常好. 今天就遇到了无法显示桌面的问题,可以参照如下解决办法.只需使用红色框中的命令即可. 图片转载 ...

  7. 「保姆级」网络爬虫教程(二):教你下载文库中的PDF文档!

    如何点赞再看,养成习惯.微信公众号搜索「Job Yan」关注这个爱发技术干货的 Coder.本文 GitHub https://github.com/JobYan/PythonPearls 已收录,还 ...

  8. Grok AI 是什么?

    原文链接:https://openaigptguide.com/grok-ai/ Grok AI是由马斯克推出的一款高级别的人工智能大语言模型,旨在帮助软件开发者以不同的口头语言交流和表达.它是基于多 ...

  9. 在路上---学习篇(一)Python 数据结构和算法 (3) --快速排序

    独白: 前几天学的基本简单排序算法,相对来说接受起来还是可以的,今天学的快速排序,视频看了2遍加上自己的思考,才真正的研究明白.自己的编程思维在逐渐的形成,日后还需勤加练习.心得:越高级的算法,越是让 ...

  10. C#/.NET/.NET Core推荐学习书籍(已分类)

    前言 古人云:"书中自有黄金屋,书中自有颜如玉",说明了书籍的重要性.作为程序员,我们需要不断学习以提升自己的核心竞争力.以下是一些优秀的C#/.NET/.NET Core相关学习 ...