标 题: VC中如何获取当前时间(精度达到毫秒级)
作 者: 0xFFFFCCCC
时 间: 2013-06-24
链 接: http://www.cnblogs.com/Y4ng/p/Milliseconds.html

对关注性能的程序开发人员而言,一个好的计时部件既是益友,也是良师。计时器既可以作为程序组件帮助程序员精确的控制程序进程,又是一件有力的调试武器,在有经验的程序员手里可以尽快的确定程序的性能瓶颈,或者对不同的算法作出有说服力的性能比较。

在Windows平台下,常用的计时器有两种,一种是timeGetTime多媒体计时器,它可以提供毫秒级的计时。但这个精度对很多应用场合而言还是太粗糙了。另一种是QueryPerformanceCount计数器,随系统的不同可以提供微秒级的计数。对于实时图形处理、多媒体数据流处理、或者实时系统构造的程序员,善用QueryPerformanceCount/QueryPerformanceFrequency是一项基本功。

本文要介绍的,是另一种直接利用Pentium CPU内部时间戳进行计时的高精度计时手段。以下讨论主要得益于《Windows图形编程》一书,第 15页-17页,有兴趣的读者可以直接参考该书。关于RDTSC指令的详细讨论,可以参考Intel产品手册。本文仅仅作抛砖之用。
在 Intel Pentium以上级别的CPU中,有一个称为“时间戳(Time Stamp)”的部件,它以64位无符号整型数的格式,记录了自CPU上电以来所经过的时钟周期数。由于目前的CPU主频都非常高,因此这个部件可以达到纳秒级的计时精度。这个精确性是上述两种方法所无法比拟的。

在Pentium以上的CPU中,提供了一条机器指令RDTSC(Read Time Stamp Counter)来读取这个时间戳的数字,并将其保存在EDX:EAX寄存器对中。由于EDX:EAX寄存器对恰好是Win32平台下C++语言保存函数返回值的寄存器,所以我们可以把这条指令看成是一个普通的函数调用。像这样:

inline unsigned __int64 GetCycleCount()
{
  __asm RDTSC
}

但是不行,因为RDTSC不被C++的内嵌汇编器直接支持,所以我们要用_emit伪指令直接嵌入该指令的机器码形式0X0F、0X31,如下:

inline unsigned __int64 GetCycleCount()
{
  __asm _emit 0x0F
  __asm _emit 0x31
}

以后在需要计数器的场合,可以像使用普通的Win32 API一样,调用两次GetCycleCount函数,比较两个返回值的差,像这样:

unsigned long t;
t = (unsigned long)GetCycleCount();
//Do Something time-intensive ...
t -= (unsigned long)GetCycleCount();

《Windows图形编程》第15页编写了一个类,把这个计数器封装起来。有兴趣的读者可以去参考那个类的代码。作者为了更精确的定时,做了一点小小的改进,把执行RDTSC指令的时间,通过连续两次调用GetCycleCount函数计算出来并保存了起来,以后每次计时结束后,都从实际得到的计数中减掉这一小段时间,以得到更准确的计时数字。但我个人觉得这一点点改进意义不大。在我的机器上实测,这条指令大概花掉了几十到100多个周期,在 Celeron 800MHz的机器上,这不过是十分之一微秒的时间。对大多数应用来说,这点时间完全可以忽略不计;而对那些确实要精确到纳秒数量级的应用来说,这个补偿也过于粗糙了。

这个方法的优点是:

1.高精度。可以直接达到纳秒级的计时精度(在1GHz的CPU上每个时钟周期就是一纳秒),这是其他计时方法所难以企及的。

2. 成本低。timeGetTime 函数需要链接多媒体库winmm.lib,QueryPerformance* 函数根据MSDN的说明,需要硬件的支持(虽然我还没有见过不支持的机器)和KERNEL库的支持,所以二者都只能在Windows平台下使用(关于DOS平台下的高精度计时问题,可以参考《图形程序开发人员指南》,里面有关于控制定时器8253的详细说明)。但RDTSC指令是一条CPU指令,凡是i386平台下Pentium以上的机器均支持,甚至没有平台的限制(我相信i386版本UNIX和Linux下这个方法同样适用,但没有条件试验),而且函数调用的开销是最小的。

3. 具有和CPU主频直接对应的速率关系。一个计数相当于1/(CPU主频Hz数)秒,这样只要知道了CPU的主频,可以直接计算出时间。这和 QueryPerformanceCount不同,后者需要通过QueryPerformanceFrequency获取当前计数器每秒的计数次数才能换算成时间。

这个方法的缺点是:

1.现有的C/C++编译器多数不直接支持使用RDTSC指令,需要用直接嵌入机器码的方式编程,比较麻烦。

2.数据抖动比较厉害。其实对任何计量手段而言,精度和稳定性永远是一对矛盾。如果用低精度的timeGetTime来计时,基本上每次计时的结果都是相同的;而RDTSC指令每次结果都不一样,经常有几百甚至上千的差距。这是这种方法高精度本身固有的矛盾。

关于这个方法计时的最大长度,我们可以简单的用下列公式计算:

自CPU上电以来的秒数 = RDTSC读出的周期数 / CPU主频速率(Hz)

64位无符号整数所能表达的最大数字是1.8×10^19,在我的Celeron 800上可以计时大约700年(书中说可以在200MHz的Pentium上计时117年,这个数字不知道是怎么得出来的,与我的计算有出入)。无论如何,我们大可不必关心溢出的问题。

下面是几个小例子,简要比较了三种计时方法的用法与精度

//Timer1.cpp 使用了RDTSC指令的Timer类//KTimer类的定义可以参见《Windows图形编程》P15
//编译行:CL Timer1.cpp /link USER32.lib

  1. #include <stdio.h>
  2. #include "KTimer.h"
  3. main()
  4. {
  5. unsigned t;
  6. KTimer timer;
  7. timer.Start();
  8. Sleep();
  9. t = timer.Stop();
  10. printf("Lasting Time: %d\n",t);
  11. }

//Timer2.cpp 使用了timeGetTime函数
//需包含<mmsys.h>,但由于Windows头文件错综复杂的关系
//简单包含<windows.h>比较偷懒:)
//编译行:CL timer2.cpp /link winmm.lib

  1. #include <windows.h>
  2. #include <stdio.h>
  3.  
  4. main()
  5. {
  6. DWORD t1, t2;
  7. t1 = timeGetTime();
  8. Sleep();
  9. t2 = timeGetTime();
  10. printf("Begin Time: %u\n", t1);
  11. printf("End Time: %u\n", t2);
  12. printf("Lasting Time: %u\n",(t2-t1));
  13. }

//Timer3.cpp 使用了QueryPerformanceCounter函数
//编译行:CL timer3.cpp /link KERNEl32.lib

  1. #include <windows.h>
  2. #include <stdio.h>
  3. void main()
  4. {
  5. LARGE_INTEGER t1, t2, tc;
  6. QueryPerformanceFrequency(&tc);
  7. printf("Frequency: %u\n", tc.QuadPart);
  8. QueryPerformanceCounter(&t1);
  9. Sleep();
  10. QueryPerformanceCounter(&t2);
  11. printf("Begin Time: %u\n", t1.QuadPart);
  12. printf("End Time: %u\n", t2.QuadPart);
  13. printf("Lasting Time: %u\n",( t2.QuadPart- t1.QuadPart));
  14. }

////////////////////////////////////////////////
//以上三个示例程序都是测试1秒钟休眠所耗费的时间
file://测/试环境:Celeron 800MHz / 256M SDRAM
// Windows 2000 Professional SP2
// Microsoft Visual C++ 6.0 SP5
////////////////////////////////////////////////

以下是Timer1的运行结果,使用的是高精度的RDTSC指令
Lasting Time: 804586872

以下是Timer2的运行结果,使用的是最粗糙的timeGetTime API
Begin Time: 20254254
End Time: 20255255
Lasting Time: 1001

以下是Timer3的运行结果,使用的是QueryPerformanceCount API
Frequency: 3579545
Begin Time: 3804729124
End Time: 3808298836
Lasting Time: 3569712

来自百度知道

VC中如何获取当前时间(精度达到毫秒级)的更多相关文章

  1. VC中监测程序运行时间(二)-毫秒级

    /* * 微秒级计时器,用来统计程序运行时间 * http://blog.csdn.net/hoya5121/article/details/3778487#comments * //整理 [10/1 ...

  2. C++获取系统时间方法(毫秒级)

    #include <sys/time.h> long getCurrentTime() { struct timeval tv; gettimeofday(&tv,NULL); r ...

  3. JS中如何获取当前时间及让时间格式化

    JS中获取当前时间和JAVA里获取当前时间一样,都是直接new Date即可.不同的是,JS中用var date=new Date();JAVA中用Data data=new Date();注:JS中 ...

  4. PHP——获取当前时间精确到毫秒(yyyyMMddHHmmssSSS)

    前言 emmmmmm,别说话,我们偷偷偷狗子 格式 | yyyyMMddHHmmssSSS 代码 获取毫秒 //获取当前时间毫秒 function msectime() { list($msec, $ ...

  5. MFC中CTime获取日期时间的方法

    MFC中CTime类的功能非常强大,可以获取年.月.日.小时.分钟.秒.星期等等,最最重要的是可根据需要去格式化.下面是具体的使用方式: ① 定义一个CTime类对象 CTime time; ② 得到 ...

  6. 关于在Servelet中如何获取当前时间的操作

    //获取到当前时间 Date date=new Date(); DateFormat format=new SimpleDateFormat("yyyy-MM-dd HH:mm:ss&quo ...

  7. java中如何获取系统时间

    需要引入的包有: import java.util.Date; 此为获取当前系统时间,合适为“1991-01-01” String now = "";    SimpleDateF ...

  8. 在JQuery中如何获取当前时间?

    ////发表时间(now) function p(s) { return s < 10 ? '0' + s : s; } var myDate = new Date(); //获取当前年 var ...

  9. Java_中快速获取系统时间

    直接调用System的currentTimeMillis()即可! long start = System.currentTimeMillis(); System.out.println(" ...

随机推荐

  1. ural 1192 Ball in a Dream

    #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> # ...

  2. Keil C51 中的函数指针和再入函数

    函数指针是C语言中几个难点之一.由于8051的C编译器的独特要求,函数指针和再入函数有更多的挑战需要克服.主要由于函数变量的传递.典型的(绝大部分8051芯片)函数变量通过堆栈的入栈和出栈命令来传递. ...

  3. Git Bash下实现复制粘贴等快速编辑功能

    在windows下使用Git Bash会经常用到选中.复制.粘贴等功能,但是一般用的方法会很复杂,笔者经过查阅一些资料,特整理一些常见编辑功能的实现方法. (1)默认方法: 单击左上角的logo ic ...

  4. iframe切换内容页仍然能自适应大小代码(含js)

    function setIframeHeight(iframe) { if (iframe) { var iframeWin = iframe.contentWindow || iframe.cont ...

  5. WINDOWS BITLOCK

    BitLocker是什么? Windows BitLocker驱动器加密通过加密Windows操作系统卷上存储的所有数据可以更好地保护计算机中的数据.BitLocker使用TPM帮助保护Windows ...

  6. Nginx各个配置块功能详解

    Nginx学习笔记-入门篇 nginx初探 ginx服务器是轻量级web服务器中广受好评的一款产品,常用功能有HTTP代理与反向代理(目前已支持七层与四层代理),负载均衡,web缓存. nginx配置 ...

  7. Sublime Text2 按shift键选择不了的问题

    记录下来,免得以后忘了: 今天在Sublime Text 2装了一个ThinkPHP插件之后.发现按shift键+鼠标左键选择不了内容了.原因是ThinkPHP里的热键与系统的有冲突了,须要设置例如以 ...

  8. Linux安装WebLogic12

    # groupadd weblogic# useradd -g weblogic weblogic# passwd weblogic# mkdir -p /var/bea# chown -R webl ...

  9. [Angular 2] @ViewChild to access Child component's method

    When you want to access child component's method, you can use @ViewChild in the parent: Parent Compo ...

  10. CAsyncSocket

    本词条缺少名片图,补充相关内容使词条更完整,还能快速升级,赶紧来编辑吧! 它是一个异步非阻塞Socket封装类,CAsyncSocket::Create()有一个参数指明了你想要处理哪些Socket事 ...