uva11178 Morley’s Theorem(求三角形的角三分线围成三角形的点)
Morley’s Theorem Input: Standard Input
Output: Standard Output
Morley’s theorem states that that the lines trisecting the angles of an arbitrary plane triangle meet at the vertices of an equilateral triangle. For example in the figure below the tri-sectors of angles A, B and C has intersected and created an equilateral triangle DEF.

Of course the theorem has various generalizations, in particular if all of the tri-sectors are intersected one obtains four other equilateral triangles. But in the original theorem only tri-sectors nearest to BC are allowed to intersect to get point D, tri-sectors nearest to CA are allowed to intersect point E and tri-sectors nearest to AB are intersected to get point F. Trisector like BD and CE are not allowed to intersect. So ultimately we get only one equilateral triangle DEF. Now your task is to find the Cartesian coordinates of D, E and F given the coordinates of A, B, and C.
Input
First line of the input file contains an integer N (0<N<5001) which denotes the number of test cases to follow. Each of the next lines contain sixintegers
. This six integers actually indicates that the Cartesian coordinates of point A, B and C are
respectively. You can assume that the area of triangle ABC is not equal to zero,
and the points A, B and C are in counter clockwise order.
Output
For each line of input you should produce one line of output. This line contains six floating point numbers
separated by a single space. These six floating-point actually means that the Cartesian coordinates of D, E and F are
respectively. Errors less than
will be accepted.
Sample Input Output for Sample Input
2 1 1 2 2 1 2 0 0 100 0 50 50 |
1.316987 1.816987 1.183013 1.683013 1.366025 1.633975 56.698730 25.000000 43.301270 25.000000 50.000000 13.397460 |
tijie:
tijie: 错的心酸。。。只需要求出两条直线求交点;
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const double eps=1e-;
struct Point{
double x,y;
Point(double x=,double y=):x(x),y(y){}
};
typedef Point Vector;
Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); }
Vector operator - (Point A, Point B) { return Vector(A.x - B.x, A.y - B.y); }
Vector operator * (Vector A, double p) { return Vector(A.x * p, A.y * p); }
Vector operator / (Vector A, double p) { return Vector(A.x / p, A.y / p); }
bool operator < (const Point &a,const Point &b){
return a.x<b.x||(a.x==b.x&&a.y<b.y);//排序
}
int dcmp(double x){//
if(fabs(x)<eps)return ;
return x<?-:;
}
bool operator == (const Point &a,const Point &b){
return dcmp(a.x-b.x)==&&dcmp(a.y-b.y)==;
}
double Dot(Vector A, Vector B) { return A.x * B.x + A.y * B.y; } //点乘
double Length(Vector A) { return sqrt(Dot(A, A)); } //向量的模
double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); } //两个向量的夹角
double Cross(Vector A, Vector B) { return A.x * B.y - A.y * B.x; } //叉乘
double Area(Point A, Point B, Point C) { return Cross(B - A, C - A); } //三个点组成的三角形的面积 Vector Rotate(Vector A, double rad) { //向量A逆时针旋转rad弧度后的坐标
return Vector(A.x * cos(rad) - A.y * sin(rad), A.x * sin(rad) + A.y * cos(rad));
} Point GetLineIntersection(Point P, Vector v, Point Q, Vector w) {
Vector u = P - Q;
double t = Cross(w, u) / Cross(v, w);
return P + v * t;
}
Point getD(Point A,Point B,Point C){
Vector v1=C-B;
double a1=Angle(A-B,v1);
v1=Rotate(v1,a1/);//少了ROTATE。。。。。。
Vector v2=B-C;
double a2=Angle(A-C,v2);
v2=Rotate(v2,-a2/);
//printf("%lf %lf %lf %lf %lf %lf\n",v1.x,v1.y,v2.x,v2.y,a1/3,a2/3);
return GetLineIntersection(B,v1,C,v2);
}
int main(){
int T;
Point a,b,c,d,e,f;
scanf("%d",&T);
while(T--){
scanf("%lf%lf%lf%lf%lf%lf",&a.x, &a.y, &b.x, &b.y, &c.x, &c.y);
d=getD(a,b,c);
e=getD(b,c,a);
f=getD(c,a,b);
printf("%lf %lf %lf %lf %lf %lf\n",d.x,d.y,e.x,e.y,f.x,f.y);
}
return ;
}
uva11178 Morley’s Theorem(求三角形的角三分线围成三角形的点)的更多相关文章
- UVA11178 Morley's Theorem(基础模板)
题目链接 题意:给出A,B, C点坐标求D,E,F坐标,其中每个角都被均等分成三份 求出 ABC的角a, 由 BC 逆时针旋转 a/3 得到BD,然后 求出 ACB 的角a2, 然后 由 BC顺时 ...
- UVA11178 Morley's Theorem
题意 PDF 分析 就按题意模拟即可,注意到对称性,只需要知道如何求其中一个. 注意A.B.C按逆时针排列,利用这个性质可以避免旋转时分类讨论. 时间复杂度\(O(T)\) 代码 #include&l ...
- [Uva11178]Morley's Theorem(计算几何)
Description 题目链接 Solution 计算几何入门题 只要求出三角形DEF的一个点就能推出其他两个点 把一条边往内旋转a/3度得到一条射线,再做一条交点就是了 Code #include ...
- uva 11178 - Morley's Theorem
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- Uva 11178 Morley's Theorem 向量旋转+求直线交点
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=9 题意: Morlery定理是这样的:作三角形ABC每个 ...
- UVA 11178 Morley's Theorem(几何)
Morley's Theorem [题目链接]Morley's Theorem [题目类型]几何 &题解: 蓝书P259 简单的几何模拟,但要熟练的应用模板,还有注意模板的适用范围和传参不要传 ...
- UVa 11178:Morley’s Theorem(两射线交点)
Problem DMorley’s TheoremInput: Standard Input Output: Standard Output Morley’s theorem states that ...
- UVA 11178 - Morley's Theorem 向量
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- UVA 11178 Morley's Theorem (坐标旋转)
题目链接:UVA 11178 Description Input Output Sample Input Sample Output Solution 题意 \(Morley's\ theorem\) ...
随机推荐
- Objective-c 中的变量
OC中的语言变量,按作用域可分为两种:局部变量和全局变量. 局部变量:也称为内部变量,局部变量是在方法内部声明的.其作用域仅限于方法内,离开该方法再使用这个变量就是非法的. 全局变量:也称为外部变量, ...
- BZOJ 1699: [Usaco2007 Jan]Balanced Lineup排队( RMQ )
RMQ.. ------------------------------------------------------------------------------- #include<cs ...
- [NOIP1999提高] CODEVS 1047 邮票面值设计(dfs+dp)
dfs出邮票的各种面值,然后dp求解. ------------------------------------------------------------------------------- ...
- php基础知识(每天分享一些以前的笔记希望能帮助自学的朋友)
php基础(第一天) php标签 1. 要知道php是一种嵌入html文档的脚本语言:php语法格式是:<?php 想要写的内容 ?>红色体就是php的标签,注意这些标签都要在英式输入法 ...
- 关于Python的self指向性
Python的self是指向类的实例化对像,而不是类本身,每次调用类的实例化即self指向此实例化对像,如下代码: class Person: def __init__(self,name): sel ...
- ASP.NET MVC5 学习笔记-5 测试
1. 测试步骤 准备 执行 检查 2. 创建单元测试 注意:单元测试不要包含数据库操作,包含数据库操作的一般成为集成测试. 2.1 编写测试代码 namespace AspNetMVCEssentia ...
- Cubieboard 关闭板载led
修改script.bin 找到最后节点[led_para] 修改leds_used = 0 script.bin 一般在系统盘的第一个分区 例如nand就在/dev/nanda sdcard就在/d ...
- 字符串匹配算法1-KMP
前面介绍过,字符串搜索一般来说有三种方式,前缀搜索,后缀搜索,子串搜索.KMP使用的是前缀搜索. 假设p的偏移是i,也就是窗口的位置是i,匹配到位置j+1时发现了不匹配.现在的问题是向前移动窗口到什么 ...
- .net web初级工程师教程
序 这份教程,只针对正在努力找工作的初级.net web工程师,软件这行,刚入门时找工作是个坎,希望教程对各位有帮助. 教程将通过一个实际项目,简单明了地完整呈现,在实际工作中,工程师都做些什么及怎么 ...
- Lotus Sametime 服务器的安装和配置
IBM Lotus Sametime 是一款强大的实时协作软件,目前最新版本是 7.5.1.通过它,您不仅能够进行网络聊天,而且可以方便地召开网络会议.在网络社区中与其他人进行沟通.了解更多关于 Lo ...