jzp线性筛及其简单应用
前言:
很久以前看过了线性筛,没怎么注意原理,但是后来发现线性筛还有很有用的。。
比如上次做的一道题就需要找出每个数的最小质因子,先筛再找就太慢了。。一看线性筛发现就可以直接在筛的过程中处理出来了!
今天又学习了屌炸天的jzp线性筛,可以在o(n)的时间内求出欧拉函数, 莫比乌斯函数等积性函数
原理:
首先jzp线性筛并不是一种新的线性筛。。其实就是jzp大牛对线性筛的一些开发应用
先回忆一下积性函数的定义 若a,b互质 则f(ab)=f(a)*f(b)的函数f 定义为积性函数,不要求a,b互质也满足的称为完全积性函数
欧拉函数和莫比乌斯函数都是积性函数但不是完全积性函数
假如我们要求 欧拉函数f(n)和莫比乌斯函数 mb(n)
显然如果n的所有质因数(p1,p2...)的次数都是1,显然p1,p2....是互质的,满足积性函数定义,则f(n)=f(p1)*f(p2).....同理mb(n)
而如果某个质因数p的次数不为1,假设为k,我们可以看(yy)出 f(p^k)=p^k-p^(k-1)=(p-1)*p^k,同时由mobius函数定义知如果某个质因数次数大于1次,则其函数值为0
那么如何在线性筛中找到次数不为1的质因子呢
我们观察 if(i%prime[j]==0) break; 这句代码,此处要筛的数n =i*prime[j],而当i%prime[j]==0 时 显然n%(prime[j]*prime[j])==0。
因此可以知道此时在n的质因子中 prime[j]的次数已经大于1了,就可以处理相应的欧拉函数和莫比乌斯函数了!
简单应用:
hdu1695
题意:
求[1,n]和[1,m]之间有多少个互质的数
做法:
以前是用容斥做的,但是容斥需要找质因数,再二进制枚举,比较慢
莫比乌斯函数其实就是容斥的系数,所以直接枚举可能出现的约数(其实就是1~n)用莫比乌斯函数求和即可
最后的式子(不判重)为sum(i=1 to n , mb(i)*(n/i)*(m/i));
这里还有一个小优化,由于是整数除法,对于i=[a,n/(n/a)] n/i都是是一样的 ,比如 100/(21,22...25)都等于4,这样可以提前对莫比乌斯函数求前缀和,直接累加即可
具体实现见代码,大神们证明了这个优化可以把复杂度降到sqrt(n)级别。具体实现起来的确是快多了,hdu直接0ms AC了!
代码:
#include <iostream>
#include <stdio.h>
#include<string.h>
#include<algorithm>
#include<string>
#include<ctype.h>
using namespace std;
#define maxn 100000
bool notprime[maxn+];
int prime[maxn+];
int mb[maxn+];
int f[maxn+];
long long sum[maxn+];
int np;
long long n,m;
void jzp()
{
np=;
memset(notprime,,sizeof(notprime));
mb[]=;
for(int i=; i<=maxn; i++)
{
if(!notprime[i])
{
prime[np++]=i;
mb[i]=-;
//f[i]=i-1;
}
for(int j=; j<np&&i*prime[j]<=maxn; j++)
{
notprime[i*prime[j]]=;
if(i%prime[j]==)
{
mb[i*prime[j]]=;
//f[i*prime[j]]=f[i]*prime[j];
break;
}
else
{
mb[i*prime[j]]=-mb[i];
//f[i*prime[j]]=f[i]*(prime[j]-1);
}
}
}
}
int main()
{
int t,cas=;
scanf("%d",&t);
jzp();
sum[]=;
for(int i=;i<=maxn;i++)
{
sum[i]=sum[i-]+mb[i];
}
while(t--)
{
int a,b,c,d,k;
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
if(k==)
{
printf("Case %d: 0\n",cas++);
continue;
}
n=min(b/k,d/k);
m=max(b/k,d/k);
long long ans=;
for(int i=;i<=n;i++)
{
int j=n/(n/i);
ans+=(n/i)*(n/i)*(sum[j]-sum[i-]);
i=j;
}
ans=-(ans/);
for(int i=;i<=n;i++)
{
int j=min(m/(m/i),n/(n/i));
ans+=(n/i)*(m/i)*(sum[j]-sum[i-]);
i=j;
}
printf("Case %d: %I64d\n",cas++,ans);
}
return ;
}
最后贴jzp筛模板
bool notprime[maxn+];
int prime[maxn+];
int mb[maxn+]; //mobius
int f[maxn+]; //euler
int np;
void jzp()
{
np=;
memset(notprime,,sizeof(notprime));
mb[]=;
for(int i=;i<=maxn;i++)
{
if(!notprime[i])
{
prime[np++]=i;
mb[i]=-;
f[i]=i-;
}
for(int j=;j<np&&i*prime[j]<=maxn;j++)
{
notprime[i*prime[j]]=;
if(i%prime[j]==)
{
mb[i*prime[j]]=;
f[i*prime[j]]=f[i]*prime[j];
break;
}
else
{
mb[i*prime[j]]=-mb[i];
f[i*prime[j]]=f[i]*(prime[j]-);
}
}
}
}
jzp线性筛及其简单应用的更多相关文章
- 【数论线性筛】洛谷P1865 A%B problem
题目背景 题目名称是吸引你点进来的 实际上该题还是很水的 题目描述 区间质数个数 输入输出格式 输入格式: 一行两个整数 询问次数n,范围m 接下来n行,每行两个整数 l,r 表示区间 输出格式: 对 ...
- SIEVE 线性筛
今天来玩玩筛 英文:Sieve 有什么筛? 这里介绍:素数筛,欧拉筛,约数个数筛,约数和筛 为什么要用筛? 顾名思义,筛就是要漏掉没用的,留下有用的.最终筛出来1~n的数的一些信息. 为什么要用线性筛 ...
- 【BZOJ3309】DZY Loves Math 莫比乌斯反演+线性筛(好题)
[BZOJ3309]DZY Loves Math Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10 ...
- 【BZOJ4804】欧拉心算 莫比乌斯反演+线性筛
[BZOJ4804]欧拉心算 Description 给出一个数字N Input 第一行为一个正整数T,表示数据组数. 接下来T行为询问,每行包含一个正整数N. T<=5000,N<=10 ...
- 莫比乌斯反演/线性筛/积性函数/杜教筛/min25筛 学习笔记
最近重新系统地学了下这几个知识点,以前没发现他们的联系,这次总结一下. 莫比乌斯反演入门:https://blog.csdn.net/litble/article/details/72804050 线 ...
- 全网一定不是最好懂的C++线性筛素数
Part 0:概念 先给几个概念(很重要): 合数:如果\(xy=z\text{且}x,y\text{为正整数}\),我们就说\(x,y\text{是}z\text{的合数}\) 素数:如果数\(a\ ...
- bzoj2693--莫比乌斯反演+积性函数线性筛
推导: 设d=gcd(i,j) 利用莫比乌斯函数的性质 令sum(x,y)=(x*(x+1)/2)*(y*(y+1)/2) 令T=d*t 设f(T)= T可以分块.又由于μ是积性函数,积性函数的约束和 ...
- BZOJ 2693: jzptab [莫比乌斯反演 线性筛]
2693: jzptab Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1194 Solved: 455[Submit][Status][Discu ...
- BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 4436 Solved: 1957[Submit][Status][Discuss ...
随机推荐
- [Redux] Writing a Todo List Reducer (Toggling a Todo)
Learn how to implement toggling a todo in a todo list application reducer. let todo = (state = [], a ...
- apktool的下载地址
googlecode将要关闭,代码转移到以下网址 http://ibotpeaches.github.io/Apktool/
- 多线程、Service与IntentService的比较
资料摘自网络(侵删) Service Thread IntentService AsyncTask When to use ? Task with no UI, but shouldn't b ...
- ASP.NET-FineUI开发实践-8
上回模拟的是下拉grid,这回我把下拉grid和表格自动补全放一起了,实在是好做,但是也有很多要注意的,现在分享下,大家学习. 接上回 传送门 1. 有个tbxMyBox1_TriggerClick ...
- DIV布局之道二:DIV块的嵌套,DIV盒子模型
本文讲解DIV块布局的第二种使用方式:嵌套.“DIV嵌套”在有些文献中也被称为“盒子模型”,说的通俗一点就是嵌套(一个大的DIV块内部又包含一个或多个DIV块). 请看如下代码: CSS部分: CSS ...
- 关于ASP.Net 4.0的ClientID
我们知道因为在原来的ASP.NET应用程序中使用服务端控件在生成ClientID的时,是很难控制的,特别是在嵌套的控件的时候,比如在多个嵌套Repeater中要控制某一个控件生成的html的ID属性, ...
- expr的简单应用
expr命令 是一个手工命令行计数器,用于在UNIX/LINUX下求表达式变量的值,一般用于整数值,也可用于字符串. –格式为: expr expression_r(命令读入Expression 参数 ...
- iOS开发之录音
录音 除了上面说的,在AVFoundation框架中还要一个AVAudioRecorder类专门处理录音操作,它同样支持多种音频格式.与AVAudioPlayer类似,你完全可以将它看成是一个录音机控 ...
- foreach遍历原理(一)
前言 要使用foreach的遍历的类首先要满足的条件 1. 类要实现公共方法 public IEnumerator GetEnumerator(){},还可以继承IEnumerable接口来实现这个方 ...
- Javascript 常用函数【2】
1.常规函数javascript常规函数包括以下9个函数:(1)alert函数:显示一个警告对话框,包括一个OK按钮.(2)confirm函数:显示一个确认对话框,包括OK.Cancel按钮.(3)e ...